问题描述
我的问题是如何将一列拆分为多列.我不知道为什么 df.toPandas()
不起作用.
my question is how to split a column to multiple columns.I don't know why df.toPandas()
does not work.
例如,我想将df_test"更改为df_test2".我看到了很多使用 pandas 模块的例子.还有其他方法吗?提前致谢.
For example, I would like to change 'df_test' to 'df_test2'.I saw many examples using the pandas module. Is there another way?Thank you in advance.
df_test = sqlContext.createDataFrame([
(1, '14-Jul-15'),
(2, '14-Jun-15'),
(3, '11-Oct-15'),
], ('id', 'date'))
df_test2
id day month year
1 14 Jul 15
2 14 Jun 15
1 11 Oct 15
推荐答案
Spark >= 2.2
您可以跳过unix_timestamp
并转换和使用to_date
或to_timestamp
:
You can skip unix_timestamp
and cast and use to_date
or to_timestamp
:
from pyspark.sql.functions import to_date, to_timestamp
df_test.withColumn("date", to_date("date", "dd-MMM-yy")).show()
## +---+----------+
## | id| date|
## +---+----------+
## | 1|2015-07-14|
## | 2|2015-06-14|
## | 3|2015-10-11|
## +---+----------+
df_test.withColumn("date", to_timestamp("date", "dd-MMM-yy")).show()
## +---+-------------------+
## | id| date|
## +---+-------------------+
## | 1|2015-07-14 00:00:00|
## | 2|2015-06-14 00:00:00|
## | 3|2015-10-11 00:00:00|
## +---+-------------------+
然后应用下面显示的其他日期时间函数.
and then apply other datetime functions shown below.
火花
不可能在一次访问中派生多个顶级列.您可以像这样将结构或集合类型与 UDF 一起使用:
It is not possible to derive multiple top level columns in a single access. You can use structs or collection types with an UDF like this:
from pyspark.sql.types import StringType, StructType, StructField
from pyspark.sql import Row
from pyspark.sql.functions import udf, col
schema = StructType([
StructField("day", StringType(), True),
StructField("month", StringType(), True),
StructField("year", StringType(), True)
])
def split_date_(s):
try:
d, m, y = s.split("-")
return d, m, y
except:
return None
split_date = udf(split_date_, schema)
transformed = df_test.withColumn("date", split_date(col("date")))
transformed.printSchema()
## root
## |-- id: long (nullable = true)
## |-- date: struct (nullable = true)
## | |-- day: string (nullable = true)
## | |-- month: string (nullable = true)
## | |-- year: string (nullable = true)
但它在 PySpark 中不仅非常冗长,而且成本也很高.
but it is not only quite verbose in PySpark, but also expensive.
对于基于日期的转换,您可以简单地使用内置函数:
For date based transformations you can simply use built-in functions:
from pyspark.sql.functions import unix_timestamp, dayofmonth, year, date_format
transformed = (df_test
.withColumn("ts",
unix_timestamp(col("date"), "dd-MMM-yy").cast("timestamp"))
.withColumn("day", dayofmonth(col("ts")).cast("string"))
.withColumn("month", date_format(col("ts"), "MMM"))
.withColumn("year", year(col("ts")).cast("string"))
.drop("ts"))
同样,您可以使用 regexp_extract
来分割日期字符串.
Similarly you could use regexp_extract
to split date string.
注意:
如果您使用未针对 SPARK-11724 打补丁的版本,这将需要unix_timestamp(...)
之后和 cast("timestamp")
之前的更正.
If you use version not patched against SPARK-11724 this will require correction after unix_timestamp(...)
and before cast("timestamp")
.
这篇关于pyspark在没有 pandas 的情况下将一列拆分为多列的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持!