本文介绍了Pyspark转置的处理方法,对大家解决问题具有一定的参考价值,需要的朋友们下面随着小编来一起学习吧!

问题描述

我具有以下格式的数据,其中包含38个测量列,分别显示了各个月,如下所示.

I have data in the below format with 38 measure columns for various months as shown below.

+---------+-----------------+-----------------+------+------------------+------------------+------------------+---------+------------------+
| Cust_No | Measure1_month1 | Measure1_month2 | .... | Measure1_month72 | Measure2_month_1 | Measure2_month_2 | ….so on | Measure2_month72 |....Measure38_month1...
+---------+-----------------+-----------------+------+------------------+------------------+------------------+---------+------------------+
|       1 |              10 |              20 | ….   |              500 |               40 |               50 | …       |                  |
|       2 |              20 |              40 | ….   |              800 |               70 |              150 | …       |                  |
+---------+-----------------+-----------------+------+------------------+------------------+------------------+---------+------------------+

我想使用PYSPARK实现以下格式.

I want to achieve the below format using PYSPARK.

+---------+-------+----------+----------+
| CustNum | Month | Measure1 | Measure2.......measure38 |
+---------+-------+----------+----------+
|       1 |     1 |       10 |       30 |
|       1 |     2 |       20 |       40 |
|       1 |     3 |       30 |       80 |
|       1 |     4 |       70 |       90 |
|       1 |     5 |       40 |      100 |
|       . |     . |        . |        . |
|       . |     . |        . |        . |
|       1 |    72 |      700 |       50 |
+---------+-------+----------+----------+

每个客户编号的

依此类推

and so on for every customer number

您能帮我吗?

谢谢

推荐答案

IIUC,您需要进行从宽到长的转换,这可以通过pyspark 中的

IIUC, you need wide to long kind of transformation which can be achieved by stack in pyspark

我创建了一个包含5个月数据的示例数据框

I created a sample dataframe with 5 months data

df = spark.createDataFrame([(1,10,20,30,40,50,10,20,30,40,50),(2,10,20,30,40,50,10,20,30,40,50)],['cust','Measrue1_month1','Measrue1_month2','Measrue1_month3','Measrue1_month4','Measrue1_month5','Measrue2_month1','Measrue2_month2','Measrue2_month3','Measrue2_month4','Measrue2_month5'])

现在生成用于堆栈操作的子句.可以用更好的方法完成,但这是最简单的示例

Now generating the clause for stack operation. Can be done in better ways but here is the most simplest example

Measure1 = [i for i in df.columns if i.startswith('Measrue1')]
Measure2 = [i for i in df.columns if i.startswith('Measrue2')]
final = []
for i in Measure1:
    for j in Measure2:
        if(i.split('_')[1]==j.split('_')[1]):
            final.append((i,j))
rows = len(final)
values = ','.join([f"'{i.split('_')[1]}',{i},{j}" for i,j in final])

现在实际应用堆栈操作

df.select('cust',expr(f'''stack({rows},{values})''').alias('Month','Measure1','Measure2')).show()

+----+------+--------+--------+
|cust| Month|Measure1|Measure2|
+----+------+--------+--------+
|   1|month1|      10|      10|
|   1|month2|      20|      20|
|   1|month3|      30|      30|
|   1|month4|      40|      40|
|   1|month5|      50|      50|
|   2|month1|      10|      10|
|   2|month2|      20|      20|
|   2|month3|      30|      30|
|   2|month4|      40|      40|
|   2|month5|      50|      50|
+----+------+--------+--------+

这篇关于Pyspark转置的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持!

08-05 08:35