问题描述
我们正在使用的PySpark库星火1.3.1接口。
我们有两个dataframes, documents_df:= {DOCUMENT_ID,document_text}
和 keywords_df:= {关键词}
。我们想加入这两个dataframes并返回与 {DOCUMENT_ID,关键词}
对所得数据帧,使用该keyword_df.keyword出现在document_df.document_text字符串的标准。
在PostgreSQL中,例如,我们可以使用形式的ON子句实现这一点:
document_df.document_text ILIKE'%'|| keyword_df.keyword || '%'
然而,在PySpark,我不能得到任何形式的连接语法工作的。有没有人取得了这样的事情过吗?
通过亲切的问候,
威尔
有可能以两种不同的方式,但一般来说不建议使用。首先让我们创建一个虚拟的数据:
从pyspark.sql进口排document_row =行(DOCUMENT_ID,document_text)
keyword_row =行(关键字)documents_df = sc.parallelize([
document_row(1L,阿帕奇火花是最好的),
document_row(2L,二郎石),
document_row(3L,但Haskell是更好)
])。toDF()keywords_df = sc.parallelize([
keyword_row(二郎),
keyword_row(哈斯克尔),
keyword_row(火花)
])。toDF()
-
蜂巢的UDF
documents_df.registerTempTable(文档)
keywords_df.registerTempTable(关键词)查询=SELECT DOCUMENT_ID,关键字
从文档中JOIN关键字
ON document_text LIKE CONCAT('%',关键字,'%')like_with_hive_udf = sqlContext.sql(查询)
like_with_hive_udf.show()## + ----------- + ------- +
## | DOCUMENT_ID |关键词|
## + ----------- + ------- +
## | 1 |火花|
## | 2 |二郎|
## | 3 |哈斯克尔|
## + ----------- + ------- + -
Python的UDF
从pyspark.sql.functions导入UDF,山坳
从pyspark.sql.types进口BooleanType#你可以in`用常规的前pression取代`
包含= UDF(拉姆达S,Q:●在S,BooleanType())like_with_python_udf =(documents_df.join(keywords_df)
。凡(包含(COL(document_text),列(关键字)))
。选择(COL(DOCUMENT_ID),列(关键字)))
like_with_python_udf.show()## + ----------- + ------- +
## | DOCUMENT_ID |关键词|
## + ----------- + ------- +
## | 1 |火花|
## | 2 |二郎|
## | 3 |哈斯克尔|
## + ----------- + ------- +
为什么不推荐?因为在这两种情况下,它需要一个笛卡尔积
like_with_hive_udf.explain()## TungstenProject [DOCUMENT_ID#2L,关键字#4]
##滤波器document_text#3 LIKE CONCAT(%,关键字#4%)
## 笛卡尔积
##扫描PhysicalRDD [DOCUMENT_ID#2L,document_text#3]
##扫描PhysicalRDD [关键字#4]like_with_python_udf.explain()## TungstenProject [DOCUMENT_ID#2L,关键字#4]
##过滤pythonUDF#13
## BatchPythonEvaluation PythonUDF#<!拉姆达>(document_text#3,#关键字4),...
## 笛卡尔积
##扫描PhysicalRDD [DOCUMENT_ID#2L,document_text#3]
##扫描PhysicalRDD [关键字#4]
有其他的方式来实现,而不完整的笛卡尔类似的效果。
-
在加入标记过的文件 - 如果有用的关键字列表是到大在一台机器的内存来处理
从pyspark.ml.feature进口标记生成器
从pyspark.sql.functions导入爆炸标记生成器=标记生成器(inputCol =document_text,outputCol =字)符号化=(tokenizer.transform(documents_df)
。选择(COL(DOCUMENT_ID),爆炸(COL(字))。别名(令牌)))like_with_tokenizer =(标记化
。加入(keywords_df,列(令牌)== COL(关键字))
.drop(令牌))like_with_tokenizer.show()## + ----------- + ------- +
## | DOCUMENT_ID |关键词|
## + ----------- + ------- +
## | 3 |哈斯克尔|
## | 1 |火花|
## | 2 |二郎|
## + ----------- + ------- +这需要洗牌,但不是直角坐标:
like_with_tokenizer.explain()## TungstenProject [DOCUMENT_ID#2L,关键字#4]
## SortMergeJoin [令牌#29],[关键字#4]
## TungstenSort [令牌#29 ASC],假的,0
## TungstenExchange hashpartitioning(令牌#29)
## TungstenProject [DOCUMENT_ID#2L,令牌#29]
##!生成爆炸(字27号),真,假,[DOCUMENT_ID#2L,...
## ConvertToSafe
## TungstenProject [DOCUMENT_ID#2L,UDF(document_text#3)字27号]
##扫描PhysicalRDD [DOCUMENT_ID#2L,document_text#3]
## TungstenSort [关键字#4 ASC],假的,0
## TungstenExchange hashpartitioning(关键字4#)
## ConvertToUnsafe
##扫描PhysicalRDD [关键字#4] -
Python的UDF和广播变量 - 如果关键字列表是比较小的。
从pyspark.sql.types输入数组类型,StringType关键字= sc.broadcast(集(
keywords_df.map(拉姆达行:行[0])。收集()))bd_contains = UDF(
拉姆达小号:名单(套(s.split())及keywords.value)
数组类型(StringType()))
like_with_bd =(documents_df.select(
COL(DOCUMENT_ID),
爆炸(bd_contains(COL(document_text)))。别名(关键字)))like_with_bd.show()## + ----------- + ------- +
## | DOCUMENT_ID |关键词|
## + ----------- + ------- +
## | 1 |火花|
## | 2 |二郎|
## | 3 |哈斯克尔|
## + ----------- + ------- +这既不需要也不洗牌,但笛卡尔你还是要播出变量传递到每一个工作节点。
like_with_bd.explain()## TungstenProject [DOCUMENT_ID#2L,关键字#46]
##!生成爆炸(pythonUDF#47),真的,假的,...
## ConvertToSafe
## TungstenProject [DOCUMENT_ID#2L,pythonUDF#47]
!## BatchPythonEvaluation PythonUDF#<&拉姆达GT;(3 document_text#),...
##扫描PhysicalRDD [DOCUMENT_ID#2L,document_text#3] -
由于星火1.6.0可以使用标记一个小的数据帧
sql.functions.broadcast
来得到与上述类似的效果,而无需使用UDF和明确的广播变量。重复使用符号化的数据:从pyspark.sql.functions进口广播like_with_tokenizer_and_bd =(广播(标记化)
。加入(keywords_df,列(令牌)== COL(关键字))
.drop(令牌))like_with_tokenizer.explain()## TungstenProject [DOCUMENT_ID#3L,关键字#5]
## BroadcastHashJoin [令牌#10],[关键字#5],BuildLeft
## TungstenProject [DOCUMENT_ID#3L,令牌#10]
##!生成爆炸(字#8),真,假...
## ConvertToSafe
## TungstenProject [DOCUMENT_ID#3L,UDF(document_text#4)词#8]
##扫描PhysicalRDD [DOCUMENT_ID#3L,document_text#4]
## ConvertToUnsafe
##扫描PhysicalRDD [关键字#5]
We are using the PySpark libraries interfacing with Spark 1.3.1.
We have two dataframes, documents_df := {document_id, document_text}
and keywords_df := {keyword}
. We would like to JOIN the two dataframes and return a resulting dataframe with {document_id, keyword}
pairs, using the criteria that the keyword_df.keyword appears in the document_df.document_text string.
In PostgreSQL, for example, we could achieve this using an ON clause of the form:
document_df.document_text ilike '%' || keyword_df.keyword || '%'
In PySpark however, I cannot get any form of join syntax to work. Has anybody achieved something like this before?
With kind regards,
Will
It is possible in a two different ways but generally speaking not recommended. First lets create a dummy data:
from pyspark.sql import Row
document_row = Row("document_id", "document_text")
keyword_row = Row("keyword")
documents_df = sc.parallelize([
document_row(1L, "apache spark is the best"),
document_row(2L, "erlang rocks"),
document_row(3L, "but haskell is better")
]).toDF()
keywords_df = sc.parallelize([
keyword_row("erlang"),
keyword_row("haskell"),
keyword_row("spark")
]).toDF()
Hive UDFs
documents_df.registerTempTable("documents") keywords_df.registerTempTable("keywords") query = """SELECT document_id, keyword FROM documents JOIN keywords ON document_text LIKE CONCAT('%', keyword, '%')""" like_with_hive_udf = sqlContext.sql(query) like_with_hive_udf.show() ## +-----------+-------+ ## |document_id|keyword| ## +-----------+-------+ ## | 1| spark| ## | 2| erlang| ## | 3|haskell| ## +-----------+-------+
Python UDF
from pyspark.sql.functions import udf, col from pyspark.sql.types import BooleanType # Of you can replace `in` with a regular expression contains = udf(lambda s, q: q in s, BooleanType()) like_with_python_udf = (documents_df.join(keywords_df) .where(contains(col("document_text"), col("keyword"))) .select(col("document_id"), col("keyword"))) like_with_python_udf.show() ## +-----------+-------+ ## |document_id|keyword| ## +-----------+-------+ ## | 1| spark| ## | 2| erlang| ## | 3|haskell| ## +-----------+-------+
Why not recommended? Because in both cases it requires a Cartesian product:
like_with_hive_udf.explain()
## TungstenProject [document_id#2L,keyword#4]
## Filter document_text#3 LIKE concat(%,keyword#4,%)
## CartesianProduct
## Scan PhysicalRDD[document_id#2L,document_text#3]
## Scan PhysicalRDD[keyword#4]
like_with_python_udf.explain()
## TungstenProject [document_id#2L,keyword#4]
## Filter pythonUDF#13
## !BatchPythonEvaluation PythonUDF#<lambda>(document_text#3,keyword#4), ...
## CartesianProduct
## Scan PhysicalRDD[document_id#2L,document_text#3]
## Scan PhysicalRDD[keyword#4]
There are other ways to achieve a similar effect without a full Cartesian.
Join on tokenized document - useful if keywords list is to large to be handled in a memory of a single machine
from pyspark.ml.feature import Tokenizer from pyspark.sql.functions import explode tokenizer = Tokenizer(inputCol="document_text", outputCol="words") tokenized = (tokenizer.transform(documents_df) .select(col("document_id"), explode(col("words")).alias("token"))) like_with_tokenizer = (tokenized .join(keywords_df, col("token") == col("keyword")) .drop("token")) like_with_tokenizer.show() ## +-----------+-------+ ## |document_id|keyword| ## +-----------+-------+ ## | 3|haskell| ## | 1| spark| ## | 2| erlang| ## +-----------+-------+
This requires shuffle but not Cartesian:
like_with_tokenizer.explain() ## TungstenProject [document_id#2L,keyword#4] ## SortMergeJoin [token#29], [keyword#4] ## TungstenSort [token#29 ASC], false, 0 ## TungstenExchange hashpartitioning(token#29) ## TungstenProject [document_id#2L,token#29] ## !Generate explode(words#27), true, false, [document_id#2L, ... ## ConvertToSafe ## TungstenProject [document_id#2L,UDF(document_text#3) AS words#27] ## Scan PhysicalRDD[document_id#2L,document_text#3] ## TungstenSort [keyword#4 ASC], false, 0 ## TungstenExchange hashpartitioning(keyword#4) ## ConvertToUnsafe ## Scan PhysicalRDD[keyword#4]
Python UDF and broadcast variable - if keywords list is relatively small
from pyspark.sql.types import ArrayType, StringType keywords = sc.broadcast(set( keywords_df.map(lambda row: row[0]).collect())) bd_contains = udf( lambda s: list(set(s.split()) & keywords.value), ArrayType(StringType())) like_with_bd = (documents_df.select( col("document_id"), explode(bd_contains(col("document_text"))).alias("keyword"))) like_with_bd.show() ## +-----------+-------+ ## |document_id|keyword| ## +-----------+-------+ ## | 1| spark| ## | 2| erlang| ## | 3|haskell| ## +-----------+-------+
It requires neither shuffle nor Cartesian but you still have to transfer broadcast variable to each worker node.
like_with_bd.explain() ## TungstenProject [document_id#2L,keyword#46] ## !Generate explode(pythonUDF#47), true, false, ... ## ConvertToSafe ## TungstenProject [document_id#2L,pythonUDF#47] ## !BatchPythonEvaluation PythonUDF#<lambda>(document_text#3), ... ## Scan PhysicalRDD[document_id#2L,document_text#3]
Since Spark 1.6.0 you can mark a small data frame using
sql.functions.broadcast
to get a similar effect as above without using UDFs and explicit broadcast variables. Reusing tokenized data:from pyspark.sql.functions import broadcast like_with_tokenizer_and_bd = (broadcast(tokenized) .join(keywords_df, col("token") == col("keyword")) .drop("token")) like_with_tokenizer.explain() ## TungstenProject [document_id#3L,keyword#5] ## BroadcastHashJoin [token#10], [keyword#5], BuildLeft ## TungstenProject [document_id#3L,token#10] ## !Generate explode(words#8), true, false, ... ## ConvertToSafe ## TungstenProject [document_id#3L,UDF(document_text#4) AS words#8] ## Scan PhysicalRDD[document_id#3L,document_text#4] ## ConvertToUnsafe ## Scan PhysicalRDD[keyword#5]
这篇关于我们怎样才能使用SQL式的&QUOT 2星火SQL dataframes;喜欢&QUOT;标准?的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持!