问题描述
我有一个非常大的pandas数据框,大约有500,000列。每列长约500个元素。对于每一列,我需要检索列中top-k元素的(索引,列)位置。
I have a very large pandas dataframe with approximately 500,000 columns. Each column is about 500 elements long. For each column, I need to retrieve the (index, column) location of the top-k elements in the column.
因此,如果k等于2,则这是我的数据框:
So, if k were equal to 2, and this were my data frame:
A B C D
w 4 8 10 2
x 5 1 1 6
y 9 22 25 7
z 15 5 7 2
我想要回复:
[(A,y),(A,z),(B,w),(B,y),(C,w),(C,y),(D,x),(D,y)]
请记住,我有大约500,000列,所以速度是我的主要关注点。是否有合理的方法可以在我的机器上花费整整一周的时间?什么是最快的方式 - 即使它对我的数据量足够快?
Keep in mind that I have approximately 500,000 columns, so speed is my primary concern. Is there a reasonable way of doing this that will not take an entire week on my machine? What is the fastest way - even if it will be fast enough for the amount of data I have?
感谢您的帮助!
推荐答案
我认为 numpy
有一个很好的解决方案您可以根据需要格式化输出。
I think numpy
has a good solution for this that's fast and you can format the output however you want.
In [2]: df = pd.DataFrame(data=np.random.randint(0, 1000, (200, 500000)),
columns=range(500000), index=range(200))
In [3]: def top_k(x,k):
ind=np.argpartition(x,-1*k)[-1*k:]
return ind[np.argsort(x[ind])]
In [69]: %time np.apply_along_axis(lambda x: top_k(x,2),0,df.as_matrix())
CPU times: user 5.91 s, sys: 40.7 ms, total: 5.95 s
Wall time: 6 s
Out[69]:
array([[ 14, 54],
[178, 141],
[ 49, 111],
...,
[ 24, 122],
[ 55, 89],
[ 9, 175]])
与熊猫解决方案相比,速度相当快(IMO更干净,但我们的速度更快):
Pretty fast compared to the pandas solution (which is cleaner IMO but we're going for speed here):
In [41]: %time np.array([df[c].nlargest(2).index.values for c in df])
CPU times: user 3min 43s, sys: 6.58 s, total: 3min 49s
Wall time: 4min 8s
Out[41]:
array([[ 54, 14],
[141, 178],
[111, 49],
...,
[122, 24],
[ 89, 55],
[175, 9]])
列表的顺序相反(您可以通过在 numpy中反转排序来轻松解决此问题
版本)
The lists are in reverse order of each other (you can easily fix this by reversing sort in the numpy
version)
请注意,在示例中由于随机int生成,我们可能有超过 k
的值是相等和最大所以返回的索引可能不同意所有方法,但都会产生有效的结果(你将得到 k
与列中的最大值匹配的索引)
Note that in the example due to random int generation we can likely have more than k
values that are equal and max so indices returned may not agree among all methods but all will yield a valid result (you will get k
indices that match the max values in the column)
这篇关于快速获取pandas数据帧中每列的top-k元素的索引的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持!