布氏算法在Javascript

布氏算法在Javascript

本文介绍了布氏算法在Javascript的处理方法,对大家解决问题具有一定的参考价值,需要的朋友们下面随着小编来一起学习吧!

问题描述

我需要一个快速算法,用于计算坐标的两个点之间的线。我试图找到好的JavaScript的布氏实现,但是有太多的和相当混乱的出版物。在维基百科 - 这里最快和最简单的形式(无师和误差计算两个方向)是presented伪code是这样的:

 功能线(X0,Y0,X1,Y1)
   DX:= ABS(X1-X0)
   邓亚萍:= ABS(Y1-Y0)
   如果X0< X1则SX:= 1,否则SX:= -1
   如果Y0<那么Y1 SY:= 1,否则SY:= -1
   错误:= DX-DY

   循环
     与setPixel(X0,Y0)
     如果X0 = X1和Y0 = Y1出口环
     E2:= 2 * ERR
     如果E2> -dy然后
       错误:= ERR  -  DY
       X0:= X + SX
     如果E2< DX然后
       错误:= ERR + DX
       Y0:= Y0 + SY
   结束循环
 

你知道一个简单而强大的JavaScript布氏实现基于这种伪code?

修改

谢谢大家!这是我在最后附带:

 函数calcStraightLine(startCoordinates,endCoordinates){
    VAR coordinatesArray =新的Array();
    //转换坐标
    VAR X1 = startCoordinates.left;
    VAR Y1 = startCoordinates.top;
    VAR X2 = endCoordinates.left;
    VAR Y2 = endCoordinates.top;
    //定义差异和错误检查
    变种DX = Math.abs(X2  -  X1);
    变种DY = Math.abs(Y2  -  Y1);
    VAR SX =(X1< X2)? 1:-1;
    VAR SY =(Y< Y2)? 1:-1;
    VAR ERR = DX  -  DY;
    //设置第一个坐标
    coordinatesArray.push(新坐标(Y1,X1));
    //主回路
    而(((X1 ==×2)及!及(Y1 == Y2))){
      VAR E2 = ERR<< 1;
      如果(E2> -dy){
        ERR  -  = DY;
        X1 + = SX;
      }
      如果(E2< D​​X){
        ERR + = DX;
        Y1 + = SY;
      }
      //设置坐标
      coordinatesArray.push(新坐标(Y1,X1));
    }
    //返回结果
    返回coordinatesArray;
  }
 

解决方案

重写你提供的伪code为JavaScript:

 功能线(X0,Y0,X1,Y1){
   变种DX = Math.abs(X1-X0);
   变种DY = Math.abs(Y1-Y0);
   VAR SX =(X0< X1)? 1:-1;
   VAR SY =(Y0< Y1)? 1:-1;
   VAR ERR = DX-DY;

   而(真){
     与setPixel(X0,Y0); //做你需要为这个

     如果((X0 == X1)及及(Y0 == Y1))打破;
     VAR E2 = 2 *走错了路。
     如果(E2> -dy){ERR  -  = DY; X0 + = SX; }
     如果(E2< D​​X){ERR + = DX; Y0 + = SY; }
   }
}
 

请注意,当你一步直接比较彩车可能会失败(尽管它应该由整数金额步进的时候不是,它可能如果任一终点是非整数),所以不是直接比较的终点,你可能想使用一个小量:

 如果(Math.abs(X0-X1)和0.0001&安培;&安培; Math.abs(Y0,Y1)和0.0001)突破;
 

这必然会耽误你,但是,所以只能这样做,如果你正在处理的非整数。

I need a fast algorithm for calculating coordinates for a line between two points. I tried to find good JavaScript Bresenham implementation, but there are too many and quite confusing publications. In wikipedia - here the fastest and most simple form (no divisions and error calculation for both directions) is presented in pseudocode like this:

 function line(x0, y0, x1, y1)
   dx := abs(x1-x0)
   dy := abs(y1-y0)
   if x0 < x1 then sx := 1 else sx := -1
   if y0 < y1 then sy := 1 else sy := -1
   err := dx-dy

   loop
     setPixel(x0,y0)
     if x0 = x1 and y0 = y1 exit loop
     e2 := 2*err
     if e2 > -dy then
       err := err - dy
       x0 := x0 + sx
     if e2 <  dx then
       err := err + dx
       y0 := y0 + sy
   end loop

Do you know of a simple and robust JavaScript Bresenham implementation based on this pseudocode?

EDIT

Thanks everybody! This is what I came with at the end:

  function calcStraightLine (startCoordinates, endCoordinates) {
    var coordinatesArray = new Array();
    // Translate coordinates
    var x1 = startCoordinates.left;
    var y1 = startCoordinates.top;
    var x2 = endCoordinates.left;
    var y2 = endCoordinates.top;
    // Define differences and error check
    var dx = Math.abs(x2 - x1);
    var dy = Math.abs(y2 - y1);
    var sx = (x1 < x2) ? 1 : -1;
    var sy = (y1 < y2) ? 1 : -1;
    var err = dx - dy;
    // Set first coordinates
    coordinatesArray.push(new Coordinates(y1, x1));
    // Main loop
    while (!((x1 == x2) && (y1 == y2))) {
      var e2 = err << 1;
      if (e2 > -dy) {
        err -= dy;
        x1 += sx;
      }
      if (e2 < dx) {
        err += dx;
        y1 += sy;
      }
      // Set coordinates
      coordinatesArray.push(new Coordinates(y1, x1));
    }
    // Return the result
    return coordinatesArray;
  }
解决方案

Rewriting your supplied pseudo-code into JavaScript:

function line(x0, y0, x1, y1){
   var dx = Math.abs(x1-x0);
   var dy = Math.abs(y1-y0);
   var sx = (x0 < x1) ? 1 : -1;
   var sy = (y0 < y1) ? 1 : -1;
   var err = dx-dy;

   while(true){
     setPixel(x0,y0);  // Do what you need to for this

     if ((x0==x1) && (y0==y1)) break;
     var e2 = 2*err;
     if (e2 >-dy){ err -= dy; x0  += sx; }
     if (e2 < dx){ err += dx; y0  += sy; }
   }
}

Note that comparing floats directly may fail as you step (though it shouldn't when stepping by integer amounts, it might if either end point is non-integer), so instead of directly comparing the end points you might want to use an epsilon:

if (Math.abs(x0-x1)<0.0001 && Math.abs(y0-y1)<0.0001) break;

This will necessarily slow you down, however, so only do this if you are dealing with non-integers.

这篇关于布氏算法在Javascript的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持!

08-04 23:06