Java中TreeSet操作的计算复杂性

Java中TreeSet操作的计算复杂性

本文介绍了Java中TreeSet操作的计算复杂性?的处理方法,对大家解决问题具有一定的参考价值,需要的朋友们下面随着小编来一起学习吧!

问题描述

我试图澄清一些关于TreeSet的一些操作的复杂性的事情。在javadoc上它说:

I am trying to clear up some things regarding complexity in some of the operations of TreeSet. On the javadoc it says:

到目前为止一切顺利。我的问题是在addAll(),removeAll()等上发生了什么。这里的Set的javadoc说:

So far so good. My question is what happens on addAll(), removeAll() etc. Here the javadoc for Set says:

它只是解释了操作的逻辑结果还是提示了复杂性?我的意思是,如果两组由例如红黑树最好以某种方式加入树木,而不是将中的每个元素添加到另一个。

Is it just explaining the logical outcome of the operation or is it giving a hint about the complexity? I mean, if the two sets are represented by e.g. red-black trees it would be better to somehow join the trees than to "add" each element of one to the other.

无论如何,有没有办法将两个TreeSet合并为一个具有O(logn)复杂度的树?

In any case, is there a way to combine two TreeSets into one with O(logn) complexity?

提前感谢您。 : - )

Thank you in advance. :-)

推荐答案

你可以想象如何将特殊情况优化到 O(log n),但最坏的情况必须是 O(m log n)其中 m n 是每棵树中元素的数量。

You could imagine how it would be possible to optimize special cases to O(log n), but the worst case has got to be O(m log n) where m and n are the number of elements in each tree.

编辑:

描述可以加入的特殊情况算法 O(log(m + n))中的树,但请注意限制: S1 的所有成员必须小于 S2 的所有成员。这就是我的意思,对特殊情况有特殊的优化。

Describes a special case algorithm that can join trees in O(log(m + n)) but note the restriction: all members of S1 must be less than all members of S2. This is what I meant that there are special optimizations for special cases.

这篇关于Java中TreeSet操作的计算复杂性?的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持!

08-04 23:01