本文介绍了OpenCV中的Hessian-仿射检测器的处理方法,对大家解决问题具有一定的参考价值,需要的朋友们下面随着小编来一起学习吧!

问题描述

我已经在许多论文和文章中了解了该检测器(尽管我不了解它的详细信息),并且在许多情况下,它比DoG更好.

I've read about this detector in many papers and articles (though I don't know it in details) and I've read that it is much better than DoG in many situations.

最初,我以为Hessian-affine是SURF检测器,但它们不是同一回事,对吧?

Initially, I thought the Hessian-affine was the SURF detector, but they're not the same thing, right?

是否有任何OpenCV实施?

Is there any OpenCV implementation?

推荐答案

抱歉,在OpenCV中未实现此检测器( http://code.opencv.org/issues/1628 )

Sorry, no implementation of this detector in OpenCV (http://code.opencv.org/issues/1628)

不,不是同一回事.

长话短说,SURF是检测器和描述符的家族",其中有很多,如您在OpenCV文档中所见( http://docs.opencv.org/3.0-beta/doc/py_tutorials/py_feature2d/py_surf_intro/py_surf_intro.html /a>).

Long story short, SURF is a "family" of detectors and descriptors, and there are plenty of of them, as you can see it in the OpenCV documentation (http://docs.opencv.org/3.0-beta/doc/py_tutorials/py_feature2d/py_surf_intro/py_surf_intro.html).

根据我记得的情况,DoG的行为与通常针对自然图像的Hessian仿射检测器相同.

From what I remember DoG behave the same than Hessian affine detector usually for natural images.

希望这会有所帮助.

这篇关于OpenCV中的Hessian-仿射检测器的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持!