本文介绍了对python多处理池进行性能分析的处理方法,对大家解决问题具有一定的参考价值,需要的朋友们下面随着小编来一起学习吧!
问题描述
我试图在多处理池中的每个进程上运行cProfile.runctx(),以了解源中的多处理瓶颈.这是我要执行的操作的简化示例:
I'm trying to run cProfile.runctx() on each process in a multiprocessing pool, to get an idea of what the multiprocessing bottlenecks are in my source. Here is a simplified example of what I'm trying to do:
from multiprocessing import Pool
import cProfile
def square(i):
return i*i
def square_wrapper(i):
cProfile.runctx("result = square(i)",
globals(), locals(), "file_"+str(i))
# NameError happens here - 'result' is not defined.
return result
if __name__ == "__main__":
pool = Pool(8)
results = pool.map_async(square_wrapper, range(15)).get(99999)
print results
不幸的是,尝试在探查器中执行结果= square(i)"不会影响调用它的作用域中的结果".我该如何完成在这里要做的事情?
Unfortunately, trying to execute "result = square(i)" in the profiler does not affect 'result' in the scope it was called from. How can I accomplish what I am trying to do here?
推荐答案
尝试一下:
def square_wrapper(i):
result = [None]
cProfile.runctx("result[0] = square(i)", globals(), locals(), "file_%d" % i)
return result[0]
这篇关于对python多处理池进行性能分析的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持!