本文介绍了什么是背后傅立叶除法算法逻辑?的处理方法,对大家解决问题具有一定的参考价值,需要的朋友们下面随着小编来一起学习吧!

问题描述

从维基百科:傅立叶师

下面是相同的截图:(鉴于全分辨率

Here is a screenshot of the same:(view in full-resolution)

这是什么算法背后的逻辑是什么?

What is the logic behind this algorithm?

我知道这是可以用来划分非常大的数字,但究竟如何操作呢?

I know it can be used to divide very large numbers, but how exactly does it work?

推荐答案

这似乎是长除法算法的巧妙改造。巧妙份似乎是,它们只使用除法运算的第一个数字,A1,并避免使用其他一个(x)的的同样的方式通过减去应用它们在下一步骤中其产品(针对部分商)从中期剩余部分。

this appears to be a clever transformation of the Long Division algorithm. The clever parts seems to be that they are only using the division operation for the first "digit", a1, and avoid having to use the other a(x)'s in the same way by applying them in the next step by subtracting their product (against the partial quotient) from the interim remainder.

这此可以有效地进行,并且它始终工作可能是由于这样的事实,即数字(基座100,在这种情况下)是不实际的数字,并且可以合理地假设值都大于它们的基础(即,100),甚至小于零。这允许更大的灵活性在每一个数字的操作等,用于实例的应用程序的定时,延迟除数的二次数字的应用(A(X> 1))之后的部分商,从创建到之前步骤的除法由一个(1),这反过来又允许它们作为产品减法施加,而不是一个分裂的操作。

That this can validly be done and that it always works is probably due to the fact that the "digits" (base 100, in this case) aren't real digits and can legitimately assume values both greater than their base (i.e., over 100) and even less than zero. This allows greater flexibility in the timing of the application of each "digit" to the operation like, for instance, deferring the application of the secondary digits of the divisor (a(x>1)) until after a partial quotient is created from the prior step's division by a(1), which in turn allows them to be applied as a product subtraction, rather than a division operation.

这篇关于什么是背后傅立叶除法算法逻辑?的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持!

08-21 12:29