本文介绍了如何从 pandas 数据帧计算 jaccard 相似度的处理方法,对大家解决问题具有一定的参考价值,需要的朋友们下面随着小编来一起学习吧!

问题描述

我有一个数据框如下:框的形状是 (1510, 1399).列代表产品,行代表用户为给定产品分配的值(0 或 1).如何计算 jaccard_similarity_score?

I have a dataframe as follows: the shape of the frame is (1510, 1399). The columns represents products, the rows represents the values (0 or 1) assigned by an user for a given product. How can I can compute a jaccard_similarity_score?

我创建了一个占位符数据框,列出了产品与产品

I created a placeholder dataframe listing product vs. product

data_ibs = pd.DataFrame(index=data_g.columns,columns=data_g.columns)

我不知道如何迭代 data_ibs 来计算相似性.

I am not sure how to iterate though data_ibs to compute similarities.

for i in range(0,len(data_ibs.columns)) :
    # Loop through the columns for each column
    for j in range(0,len(data_ibs.columns)) :
.........

推荐答案

简短且矢量化(快速)的答案:

Short and vectorized (fast) answer:

使用来自 scikit learn 的成对距离的 'hamming':

Use 'hamming' from the pairwise distances of scikit learn:

from sklearn.metrics.pairwise import pairwise_distances
jac_sim = 1 - pairwise_distances(df.T, metric = "hamming")
# optionally convert it to a DataFrame
jac_sim = pd.DataFrame(jac_sim, index=df.columns, columns=df.columns)


说明:


Explanation:

假设这是您的数据集:

import pandas as pd
import numpy as np
np.random.seed(0)
df = pd.DataFrame(np.random.binomial(1, 0.5, size=(100, 5)), columns=list('ABCDE'))
print(df.head())

   A  B  C  D  E
0  1  1  1  1  0
1  1  0  1  1  0
2  1  1  1  1  0
3  0  0  1  1  1
4  1  1  0  1  0

使用sklearn的jaccard_score,A列和B列的相似度为:

Using sklearn's jaccard_score, similarity between column A and B is:

from sklearn.metrics import jaccard_score
print(jaccard_score(df['A'], df['B']))
0.43

这是在总行数 100 中具有相同值的行数.

This is the number of rows that have the same value over total number of rows, 100.

据我所知,jaccard_score 没有成对版本,但有成对版本的距离.

As far as I know, there is no pairwise version of the jaccard_score but there are pairwise versions of distances.

然而,SciPy 定义了Jaccard 距离如下:

However, SciPy defines Jaccard distance as follows:

给定两个向量 u 和 v,Jaccard 距离是那些不一致的元素 u[i] 和 v[i] 在其中至少一个非零的情况下的比例.

因此它排除了两列都为 0 值的行.jaccard_score 没有.另一方面,汉明距离符合相似性定义:

So it excludes the rows where both columns have 0 values. jaccard_score doesn't. Hamming distance, on the other hand, is inline with the similarity definition:

这些向量元素在两个 n 向量 u 和 v 之间的比例哪个不同意.

所以如果要计算jaccard_score,可以使用1-hamming:

So if you want to calculate jaccard_score, you can use 1 - hamming:

from sklearn.metrics.pairwise import pairwise_distances
print(1 - pairwise_distances(df.T, metric = "hamming"))

array([[ 1.  ,  0.43,  0.61,  0.55,  0.46],
       [ 0.43,  1.  ,  0.52,  0.56,  0.49],
       [ 0.61,  0.52,  1.  ,  0.48,  0.53],
       [ 0.55,  0.56,  0.48,  1.  ,  0.49],
       [ 0.46,  0.49,  0.53,  0.49,  1.  ]])

以数据帧格式:

jac_sim = 1 - pairwise_distances(df.T, metric = "hamming")
jac_sim = pd.DataFrame(jac_sim, index=df.columns, columns=df.columns)
# jac_sim = np.triu(jac_sim) to set the lower diagonal to zero
# jac_sim = np.tril(jac_sim) to set the upper diagonal to zero

      A     B     C     D     E
A  1.00  0.43  0.61  0.55  0.46
B  0.43  1.00  0.52  0.56  0.49
C  0.61  0.52  1.00  0.48  0.53
D  0.55  0.56  0.48  1.00  0.49
E  0.46  0.49  0.53  0.49  1.00

您可以通过迭代列组合来执行相同的操作,但速度会慢得多.

You can do the same by iterating over combinations of columns but it will be much slower.

import itertools
sim_df = pd.DataFrame(np.ones((5, 5)), index=df.columns, columns=df.columns)
for col_pair in itertools.combinations(df.columns, 2):
    sim_df.loc[col_pair] = sim_df.loc[tuple(reversed(col_pair))] = jaccard_score(df[col_pair[0]], df[col_pair[1]])
print(sim_df)
      A     B     C     D     E
A  1.00  0.43  0.61  0.55  0.46
B  0.43  1.00  0.52  0.56  0.49
C  0.61  0.52  1.00  0.48  0.53
D  0.55  0.56  0.48  1.00  0.49
E  0.46  0.49  0.53  0.49  1.00

这篇关于如何从 pandas 数据帧计算 jaccard 相似度的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持!

08-04 12:57