问题描述
我有两个二维数组,数字之一,布尔值:
X =
阵列([0,0,0,0,0,0,0,0,0,0],
[1,1,1,1,1,1,1,1,1,1]
[2,2,2,2,2,2,2,2,2,2]
[3,3,3,3,3,3,3,3,3,3]
[4,4,4,4,4,4,4,4,4,4]
[5,5,5,5,5,5,5,5,5,5]
[6,6,6,6,6,6,6,6,6,6]
[7,7,7,7,7,7,7,7,7,7]
[8,8,8,8,8,8,8,8,8,8]
[9. 9. 9. 9. 9. 9. 9. 9. 9. 9.]])IDX =
阵列([假,假,假,假,假,假,假,假,假,假]
[假,真,真,真,真,真,假,假,假,假]
[假,真,真,真,真,真,假,假,假,假]
[假,真,真,真,真,真,假,假,假,假]
[假,假,假,真,真,真,真,假,假,假]
[假,假,假,假,真,真,真,假,假,假]
[假,假,假,假,假,假,真,假,假,假]
[假,假,假,假,假,假,假,真,假,假]
[假,假,假,假,假,假,假,假,假,假]
[假,假,假,假,假,假,假,假,假,假],DTYPE =布尔)
在I指数则返回一维数组数组:
X [IDX]
阵列([1,1,1,1,1,2,2,2,2,2,3,3,3,
3,3,4,4,4,4,5,5,5,6,7])
我如何索引数组,并与预期输出返回一个二维数组:
X [IDX]
阵列([1,1,1,1,1]
[2,2,2,2,2]
[3,3,3,3,3]
[4,4,4,4]
[5,5,5]
[6]
[7.]])
您命令返回一维数组,因为这是不可能实现无(一)破坏柱结构,这通常是必要的。例如,在 7
您请求的输出原本属于7列,现在它在列0;和(b) numpy的
不,据我所知,支持与同尺寸大小不同的高维数组。我的意思是,numpy的不能有一个数组,其前三行是长度为5,长度4等的第4行的 - 所有的行(相同尺寸)需要具有相同的长度
我想你可以期望的最好结果是数组(而不是二维数组)的数组。这是我会怎样构建的,虽然有可能是更好的方法,我不知道的:
在[9]:从和itertools导入izip
在[11]:阵列([R [ridx]对于R,ridx在izip(X,IDX)如果ridx.sum()大于0])
出[11]:
阵列([阵列([1,1,1,1,1]),阵列([2,2,2,2,2]),
阵列([3,3,3,3,3]),阵列([4,4,4,4]),
阵列([5,5,5]),阵列([6]),阵列([7])],DTYPE =对象)
I have a two 2D arrays, one of numbers and one of boolean values:
x =
array([[ 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.],
[ 1., 1., 1., 1., 1., 1., 1., 1., 1., 1.],
[ 2., 2., 2., 2., 2., 2., 2., 2., 2., 2.],
[ 3., 3., 3., 3., 3., 3., 3., 3., 3., 3.],
[ 4., 4., 4., 4., 4., 4., 4., 4., 4., 4.],
[ 5., 5., 5., 5., 5., 5., 5., 5., 5., 5.],
[ 6., 6., 6., 6., 6., 6., 6., 6., 6., 6.],
[ 7., 7., 7., 7., 7., 7., 7., 7., 7., 7.],
[ 8., 8., 8., 8., 8., 8., 8., 8., 8., 8.],
[ 9., 9., 9., 9., 9., 9., 9., 9., 9., 9.]])
idx =
array([[False, False, False, False, False, False, False, False, False, False],
[False, True, True, True, True, True, False, False, False, False],
[False, True, True, True, True, True, False, False, False, False],
[False, True, True, True, True, True, False, False, False, False],
[False, False, False, True, True, True, True, False, False, False],
[False, False, False, False, True, True, True, False, False, False],
[False, False, False, False, False, False, True, False, False, False],
[False, False, False, False, False, False, False, True, False, False],
[False, False, False, False, False, False, False, False, False, False],
[False, False, False, False, False, False, False, False, False, False]], dtype=bool)
When I index the array it returns a 1D array:
x[idx]
array([ 1., 1., 1., 1., 1., 2., 2., 2., 2., 2., 3., 3., 3.,
3., 3., 4., 4., 4., 4., 5., 5., 5., 6., 7.])
How do I index the array and return a 2D array with the expected output:
x[idx]
array([[ 1., 1., 1., 1., 1.],
[ 2., 2., 2., 2., 2.],
[ 3., 3., 3., 3., 3.],
[ 4., 4., 4., 4.],
[ 5., 5., 5.],
[ 6.],
[ 7.]])
Your command returns a 1D array since it's impossible to fulfill without (a) destroying the column structure, which is usually needed. e.g., the 7
in your requested output originally belonged to column 7, and now it's on column 0; and (b) numpy
does not, afaik, support high dimensional array with different sizes on the same dimension. What I mean is that numpy can't have an array whose first three rows are of length 5, 4th row of length 4, etc. - all the rows (same dimension) need to have the same length.
I think the best result you could hope for is an array of arrays (and not a 2D array). This is how I would construct it, though there are probably better ways I don't know of:
In [9]: from itertools import izip
In [11]: array([r[ridx] for r, ridx in izip(x, idx) if ridx.sum() > 0])
Out[11]:
array([array([ 1., 1., 1., 1., 1.]), array([ 2., 2., 2., 2., 2.]),
array([ 3., 3., 3., 3., 3.]), array([ 4., 4., 4., 4.]),
array([ 5., 5., 5.]), array([ 6.]), array([ 7.])], dtype=object)
这篇关于在numpy的多维布尔数组索引的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持!