问题描述
我正在使用Spark 1.5.
I am using Spark 1.5.
我有两个形式的数据框:
I have two dataframes of the form:
scala> libriFirstTable50Plus3DF
res1: org.apache.spark.sql.DataFrame = [basket_id: string, family_id: int]
scala> linkPersonItemLessThan500DF
res2: org.apache.spark.sql.DataFrame = [person_id: int, family_id: int]
libriFirstTable50Plus3DF
具有 766,151条记录,而linkPersonItemLessThan500DF
具有 26,694,353条记录.请注意,由于我打算稍后将这两个加入,因此我在linkPersonItemLessThan500DF
上使用了repartition(number)
.我在执行上面的代码:
libriFirstTable50Plus3DF
has 766,151 records while linkPersonItemLessThan500DF
has 26,694,353 records. Note that I am using repartition(number)
on linkPersonItemLessThan500DF
since I intend to join these two later on. I am following up the above code with:
val userTripletRankDF = linkPersonItemLessThan500DF
.join(libriFirstTable50Plus3DF, Seq("family_id"))
.take(20)
.foreach(println(_))
我将得到以下输出:
16/12/13 15:07:10 INFO scheduler.TaskSetManager: Finished task 172.0 in stage 3.0 (TID 473) in 520 ms on mlhdd01.mondadori.it (199/200)
java.util.concurrent.TimeoutException: Futures timed out after [300 seconds]
at scala.concurrent.impl.Promise$DefaultPromise.ready(Promise.scala:219)
at scala.concurrent.impl.Promise$DefaultPromise.result(Promise.scala:223)
at scala.concurrent.Await$$anonfun$result$1.apply(package.scala:107)
at scala.concurrent.BlockContext$DefaultBlockContext$.blockOn(BlockContext.scala: at scala.concurrent.Await$.result(package.scala:107)
at org.apache.spark.sql.execution.joins.BroadcastHashJoin.doExecute(BroadcastHashJoin.scala:110)
at org.apache.spark.sql.execution.SparkPlan$$anonfun$execute$5.apply(SparkPlan.scala:140)
at org.apache.spark.sql.execution.SparkPlan$$anonfun$execute$5.apply(SparkPlan.scala:138)
at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:147)
at org.apache.spark.sql.execution.SparkPlan.execute(SparkPlan.scala:138)
at org.apache.spark.sql.execution.TungstenProject.doExecute(basicOperators.scala:86)
at org.apache.spark.sql.execution.SparkPlan$$anonfun$execute$5.apply(SparkPlan.scala:140)
at org.apache.spark.sql.execution.SparkPlan$$anonfun$execute$5.apply(SparkPlan.scala:138)
at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:147)
at org.apache.spark.sql.execution.SparkPlan.execute(SparkPlan.scala:138)
at org.apache.spark.sql.execution.ConvertToSafe.doExecute(rowFormatConverters.scala:63)
at org.apache.spark.sql.execution.SparkPlan$$anonfun$execute$5.apply(SparkPlan.scala:140)
at org.apache.spark.sql.execution.SparkPlan$$anonfun$execute$5.apply(SparkPlan.scala:138)
at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:147)
at org.apache.spark.sql.execution.SparkPlan.execute(SparkPlan.scala:138)
at org.apache.spark.sql.execution.SparkPlan.executeTake(SparkPlan.scala:190)
at org.apache.spark.sql.execution.Limit.executeCollect(basicOperators.scala:207)
at org.apache.spark.sql.DataFrame$$anonfun$collect$1.apply(DataFrame.scala:1386)
at org.apache.spark.sql.DataFrame$$anonfun$collect$1.apply(DataFrame.scala:1386)
at org.apache.spark.sql.execution.SQLExecution$.withNewExecutionId(SQLExecution.scala:56)
at org.apache.spark.sql.DataFrame.withNewExecutionId(DataFrame.scala:1904)
at org.apache.spark.sql.DataFrame.collect(DataFrame.scala:1385)
at org.apache.spark.sql.DataFrame.head(DataFrame.scala:1315)
at org.apache.spark.sql.DataFrame.take(DataFrame.scala:1378)
at org.apache.spark.sql.DataFrame.showString(DataFrame.scala:178)
at org.apache.spark.sql.DataFrame.show(DataFrame.scala:402)
at org.apache.spark.sql.DataFrame.show(DataFrame.scala:363)
at org.apache.spark.sql.DataFrame.show(DataFrame.scala:371)
at $iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC.<init>(<console>:72)
at $iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC.<init>(<console>:77)
at $iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC.<init>(<console>:79)
at $iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC.<init>(<console>:81)
at $iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC.<init>(<console>:83)
at $iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC.<init>(<console>:85)
at $iwC$$iwC$$iwC$$iwC$$iwC$$iwC.<init>(<console>:87)
at $iwC$$iwC$$iwC$$iwC$$iwC.<init>(<console>:89)
at $iwC$$iwC$$iwC$$iwC.<init>(<console>:91)
at $iwC$$iwC$$iwC.<init>(<console>:93)
at $iwC$$iwC.<init>(<console>:95)
at $iwC.<init>(<console>:97)
at <init>(<console>:99)
at .<init>(<console>:103)
at .<clinit>(<console>)
at .<init>(<console>:7)
at .<clinit>(<console>)
at $print(<console>)
at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:57)
at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)
at java.lang.reflect.Method.invoke(Method.java:606)
at org.apache.spark.repl.SparkIMain$ReadEvalPrint.call(SparkIMain.scala:1065)
at org.apache.spark.repl.SparkIMain$Request.loadAndRun(SparkIMain.scala:1340)
at org.apache.spark.repl.SparkIMain.loadAndRunReq$1(SparkIMain.scala:840)
at org.apache.spark.repl.SparkIMain.interpret(SparkIMain.scala:871)
at org.apache.spark.repl.SparkIMain.interpret(SparkIMain.scala:819)
at org.apache.spark.repl.SparkILoop.reallyInterpret$1(SparkILoop.scala:857)
at org.apache.spark.repl.SparkILoop.interpretStartingWith(SparkILoop.scala:902)
at org.apache.spark.repl.SparkILoop.command(SparkILoop.scala:814)
at org.apache.spark.repl.SparkILoop.processLine$1(SparkILoop.scala:657)
at org.apache.spark.repl.SparkILoop.innerLoop$1(SparkILoop.scala:665)
at org.apache.spark.repl.SparkILoop.org$apache$spark$repl$SparkILoop$$loop(SparkILoop.scala:670)
at org.apache.spark.repl.SparkILoop$$anonfun$org$apache$spark$repl$SparkILoop$$process$1.apply$mcZ$sp(SparkILoop.scala:997)
at org.apache.spark.repl.SparkILoop$$anonfun$org$apache$spark$repl$SparkILoop$$process$1.apply(SparkILoop.scala:945)
at org.apache.spark.repl.SparkILoop$$anonfun$org$apache$spark$repl$SparkILoop$$process$1.apply(SparkILoop.scala:945)
at scala.tools.nsc.util.ScalaClassLoader$.savingContextLoader(ScalaClassLoader.scala:135)
at org.apache.spark.repl.SparkILoop.org$apache$spark$repl$SparkILoop$$process(SparkILoop.scala:945)
at org.apache.spark.repl.SparkILoop.process(SparkILoop.scala:1059)
at org.apache.spark.repl.Main$.main(Main.scala:31)
at org.apache.spark.repl.Main.main(Main.scala)
at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:57)
at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)
at java.lang.reflect.Method.invoke(Method.java:606)
at org.apache.spark.deploy.SparkSubmit$.org$apache$spark$deploy$SparkSubmit$$runMain(SparkSubmit.scala:672)
at org.apache.spark.deploy.SparkSubmit$.doRunMain$1(SparkSubmit.scala:180)
at org.apache.spark.deploy.SparkSubmit$.submit(SparkSubmit.scala:205)
at org.apache.spark.deploy.SparkSubmit$.main(SparkSubmit.scala:120)
at org.apache.spark.deploy.SparkSubmit.main(SparkSubmit.scala)
我不明白这是什么问题.是否像增加等待时间一样简单?加入太密集了吗?我需要更多的内存吗?改组是否密集?有人可以帮忙吗?
and I don't understand what is the issue. Is it as simple as increasing the waiting time? Is the join too intensive? Do I need more memory? Is the shufffling intensive? Can anyone help?
推荐答案
之所以会发生这种情况,是因为Spark尝试进行广播哈希联接,并且其中一个DataFrame很大,因此发送它会花费很多时间.
This happens because Spark tries to do Broadcast Hash Join and one of the DataFrames is very large, so sending it consumes much time.
您可以:
- 设置较高的
spark.sql.broadcastTimeout
以增加超时-spark.conf.set("spark.sql.broadcastTimeout", newValueForExample36000)
-
persist()
两个DataFrame,然后Spark将使用Shuffle Join-从
- Set higher
spark.sql.broadcastTimeout
to increase timeout -spark.conf.set("spark.sql.broadcastTimeout", newValueForExample36000)
persist()
both DataFrames, then Spark will use Shuffle Join - reference from here
PySpark
在PySpark中,您可以通过以下方式在构建Spark上下文时设置配置:
PySpark
In PySpark, you can set the config when you build the spark context in the following manner:
spark = SparkSession
.builder
.appName("Your App")
.config("spark.sql.broadcastTimeout", "36000")
.getOrCreate()
这篇关于为什么联接失败并显示"java.util.concurrent.TimeoutException:期货在[300秒]后超时"?的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持!