本文介绍了将pandas DateTimeIndex转换为Unix时间?的处理方法,对大家解决问题具有一定的参考价值,需要的朋友们下面随着小编来一起学习吧!
问题描述
将熊猫的DateTimeIndex转换为Unix时间(可迭代)的惯用方式是什么?这可能不是要走的路:
What is the idiomatic way of converting a pandas DateTimeIndex to (an iterable of) Unix Time?This is probably not the way to go:
[time.mktime(t.timetuple()) for t in my_data_frame.index.to_pydatetime()]
推荐答案
由于DatetimeIndex
是ndarray
的内幕,因此您无需费解即可进行转换(快得多).
As DatetimeIndex
is ndarray
under the hood, you can do the conversion without a comprehension (much faster).
In [1]: import numpy as np
In [2]: import pandas as pd
In [3]: from datetime import datetime
In [4]: dates = [datetime(2012, 5, 1), datetime(2012, 5, 2), datetime(2012, 5, 3)]
...: index = pd.DatetimeIndex(dates)
...:
In [5]: index.astype(np.int64)
Out[5]: array([1335830400000000000, 1335916800000000000, 1336003200000000000],
dtype=int64)
In [6]: index.astype(np.int64) // 10**9
Out[6]: array([1335830400, 1335916800, 1336003200], dtype=int64)
%timeit [t.value // 10 ** 9 for t in index]
10000 loops, best of 3: 119 us per loop
%timeit index.astype(np.int64) // 10**9
100000 loops, best of 3: 18.4 us per loop
这篇关于将pandas DateTimeIndex转换为Unix时间?的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持!