本文介绍了Caffe中的"lr_policy"是什么?的处理方法,对大家解决问题具有一定的参考价值,需要的朋友们下面随着小编来一起学习吧!
问题描述
我只是尝试找出如何使用 Caffe .为此,我只看了示例文件夹中的不同.prototxt
文件.有一种我不明白的选择:
I just try to find out how I can use Caffe. To do so, I just took a look at the different .prototxt
files in the examples folder. There is one option I don't understand:
# The learning rate policy
lr_policy: "inv"
可能的值似乎是:
-
"fixed"
-
"inv"
-
"step"
-
"multistep"
-
"stepearly"
-
"poly"
"fixed"
"inv"
"step"
"multistep"
"stepearly"
"poly"
有人可以解释一下这些选项吗?
Could somebody please explain those options?
推荐答案
如果查看/caffe-master/src/caffe/proto/caffe.proto
文件(可以在线找到它,请),您将看到以下说明:
If you look inside the /caffe-master/src/caffe/proto/caffe.proto
file (you can find it online here) you will see the following descriptions:
// The learning rate decay policy. The currently implemented learning rate
// policies are as follows:
// - fixed: always return base_lr.
// - step: return base_lr * gamma ^ (floor(iter / step))
// - exp: return base_lr * gamma ^ iter
// - inv: return base_lr * (1 + gamma * iter) ^ (- power)
// - multistep: similar to step but it allows non uniform steps defined by
// stepvalue
// - poly: the effective learning rate follows a polynomial decay, to be
// zero by the max_iter. return base_lr (1 - iter/max_iter) ^ (power)
// - sigmoid: the effective learning rate follows a sigmod decay
// return base_lr ( 1/(1 + exp(-gamma * (iter - stepsize))))
//
// where base_lr, max_iter, gamma, step, stepvalue and power are defined
// in the solver parameter protocol buffer, and iter is the current iteration.
这篇关于Caffe中的"lr_policy"是什么?的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持!