本文介绍了为什么2 *(i * i)比Java中的2 * i * i更快?的处理方法,对大家解决问题具有一定的参考价值,需要的朋友们下面随着小编来一起学习吧!

问题描述

以下Java程序平均需要在0.50到0.55之间运行:

The following Java program takes on average between 0.50s and 0.55s to run:

public static void main(String[] args) {
    long startTime = System.nanoTime();
    int n = 0;
    for (int i = 0; i < 1000000000; i++) {
        n += 2 * (i * i);
    }
    System.out.println((double) (System.nanoTime() - startTime) / 1000000000 + " s");
    System.out.println("n = " + n);
}

如果我更换 2 *(i * i) 2 * i * i ,运行时需要0.60到0.65秒。怎么来?

If I replace 2 * (i * i) with 2 * i * i, it takes between 0.60 and 0.65s to run. How come?

我运行了15次的每个版本的程序,在两者之间交替。结果如下:

I ran each version of the program 15 times, alternating between the two. Here are the results:

 2*(i*i)  |  2*i*i
----------+----------
0.5183738 | 0.6246434
0.5298337 | 0.6049722
0.5308647 | 0.6603363
0.5133458 | 0.6243328
0.5003011 | 0.6541802
0.5366181 | 0.6312638
0.515149  | 0.6241105
0.5237389 | 0.627815
0.5249942 | 0.6114252
0.5641624 | 0.6781033
0.538412  | 0.6393969
0.5466744 | 0.6608845
0.531159  | 0.6201077
0.5048032 | 0.6511559
0.5232789 | 0.6544526

最快的 2 * i * i 花费的时间超过 2 *(i * i)的最慢运行时间。如果它们同样有效,那么发生这种情况的可能性将小于1/2 ^ 15 = 0.00305%。

The fastest run of 2 * i * i took longer than the slowest run of 2 * (i * i). If they were both as efficient, the probability of this happening would be less than 1/2^15 = 0.00305%.

推荐答案

字节码的顺序略有不同。

There is a slight difference in the ordering of the bytecode.

2 *(i * i)

     iconst_2
     iload0
     iload0
     imul
     imul
     iadd

vs 2 * i * i

     iconst_2
     iload0
     imul
     iload0
     imul
     iadd

乍一看,这不应该有所作为;如果有的话,第二个版本更优,因为它使用的一个槽少。

At first sight this should not make a difference; if anything the second version is more optimal since it uses one slot less.

所以我们需要深入挖掘更低层次(JIT).

请记住,JIT倾向于非常积极地展开小循环。事实上,我们观察到16倍展开 2 *(i * i)案例:

Remember that JIT tends to unroll small loops very aggressively. Indeed we observe a 16x unrolling for the 2 * (i * i) case:

030   B2: # B2 B3 <- B1 B2  Loop: B2-B2 inner main of N18 Freq: 1e+006
030     addl    R11, RBP    # int
033     movl    RBP, R13    # spill
036     addl    RBP, #14    # int
039     imull   RBP, RBP    # int
03c     movl    R9, R13 # spill
03f     addl    R9, #13 # int
043     imull   R9, R9  # int
047     sall    RBP, #1
049     sall    R9, #1
04c     movl    R8, R13 # spill
04f     addl    R8, #15 # int
053     movl    R10, R8 # spill
056     movdl   XMM1, R8    # spill
05b     imull   R10, R8 # int
05f     movl    R8, R13 # spill
062     addl    R8, #12 # int
066     imull   R8, R8  # int
06a     sall    R10, #1
06d     movl    [rsp + #32], R10    # spill
072     sall    R8, #1
075     movl    RBX, R13    # spill
078     addl    RBX, #11    # int
07b     imull   RBX, RBX    # int
07e     movl    RCX, R13    # spill
081     addl    RCX, #10    # int
084     imull   RCX, RCX    # int
087     sall    RBX, #1
089     sall    RCX, #1
08b     movl    RDX, R13    # spill
08e     addl    RDX, #8 # int
091     imull   RDX, RDX    # int
094     movl    RDI, R13    # spill
097     addl    RDI, #7 # int
09a     imull   RDI, RDI    # int
09d     sall    RDX, #1
09f     sall    RDI, #1
0a1     movl    RAX, R13    # spill
0a4     addl    RAX, #6 # int
0a7     imull   RAX, RAX    # int
0aa     movl    RSI, R13    # spill
0ad     addl    RSI, #4 # int
0b0     imull   RSI, RSI    # int
0b3     sall    RAX, #1
0b5     sall    RSI, #1
0b7     movl    R10, R13    # spill
0ba     addl    R10, #2 # int
0be     imull   R10, R10    # int
0c2     movl    R14, R13    # spill
0c5     incl    R14 # int
0c8     imull   R14, R14    # int
0cc     sall    R10, #1
0cf     sall    R14, #1
0d2     addl    R14, R11    # int
0d5     addl    R14, R10    # int
0d8     movl    R10, R13    # spill
0db     addl    R10, #3 # int
0df     imull   R10, R10    # int
0e3     movl    R11, R13    # spill
0e6     addl    R11, #5 # int
0ea     imull   R11, R11    # int
0ee     sall    R10, #1
0f1     addl    R10, R14    # int
0f4     addl    R10, RSI    # int
0f7     sall    R11, #1
0fa     addl    R11, R10    # int
0fd     addl    R11, RAX    # int
100     addl    R11, RDI    # int
103     addl    R11, RDX    # int
106     movl    R10, R13    # spill
109     addl    R10, #9 # int
10d     imull   R10, R10    # int
111     sall    R10, #1
114     addl    R10, R11    # int
117     addl    R10, RCX    # int
11a     addl    R10, RBX    # int
11d     addl    R10, R8 # int
120     addl    R9, R10 # int
123     addl    RBP, R9 # int
126     addl    RBP, [RSP + #32 (32-bit)]   # int
12a     addl    R13, #16    # int
12e     movl    R11, R13    # spill
131     imull   R11, R13    # int
135     sall    R11, #1
138     cmpl    R13, #999999985
13f     jl     B2   # loop end  P=1.000000 C=6554623.000000

我们看到有1个寄存器被溢出到堆栈上。

We see that there is 1 register that is "spilled" onto the stack.

对于 2 * i * i 版本:

05a   B3: # B2 B4 <- B1 B2  Loop: B3-B2 inner main of N18 Freq: 1e+006
05a     addl    RBX, R11    # int
05d     movl    [rsp + #32], RBX    # spill
061     movl    R11, R8 # spill
064     addl    R11, #15    # int
068     movl    [rsp + #36], R11    # spill
06d     movl    R11, R8 # spill
070     addl    R11, #14    # int
074     movl    R10, R9 # spill
077     addl    R10, #16    # int
07b     movdl   XMM2, R10   # spill
080     movl    RCX, R9 # spill
083     addl    RCX, #14    # int
086     movdl   XMM1, RCX   # spill
08a     movl    R10, R9 # spill
08d     addl    R10, #12    # int
091     movdl   XMM4, R10   # spill
096     movl    RCX, R9 # spill
099     addl    RCX, #10    # int
09c     movdl   XMM6, RCX   # spill
0a0     movl    RBX, R9 # spill
0a3     addl    RBX, #8 # int
0a6     movl    RCX, R9 # spill
0a9     addl    RCX, #6 # int
0ac     movl    RDX, R9 # spill
0af     addl    RDX, #4 # int
0b2     addl    R9, #2  # int
0b6     movl    R10, R14    # spill
0b9     addl    R10, #22    # int
0bd     movdl   XMM3, R10   # spill
0c2     movl    RDI, R14    # spill
0c5     addl    RDI, #20    # int
0c8     movl    RAX, R14    # spill
0cb     addl    RAX, #32    # int
0ce     movl    RSI, R14    # spill
0d1     addl    RSI, #18    # int
0d4     movl    R13, R14    # spill
0d7     addl    R13, #24    # int
0db     movl    R10, R14    # spill
0de     addl    R10, #26    # int
0e2     movl    [rsp + #40], R10    # spill
0e7     movl    RBP, R14    # spill
0ea     addl    RBP, #28    # int
0ed     imull   RBP, R11    # int
0f1     addl    R14, #30    # int
0f5     imull   R14, [RSP + #36 (32-bit)]   # int
0fb     movl    R10, R8 # spill
0fe     addl    R10, #11    # int
102     movdl   R11, XMM3   # spill
107     imull   R11, R10    # int
10b     movl    [rsp + #44], R11    # spill
110     movl    R10, R8 # spill
113     addl    R10, #10    # int
117     imull   RDI, R10    # int
11b     movl    R11, R8 # spill
11e     addl    R11, #8 # int
122     movdl   R10, XMM2   # spill
127     imull   R10, R11    # int
12b     movl    [rsp + #48], R10    # spill
130     movl    R10, R8 # spill
133     addl    R10, #7 # int
137     movdl   R11, XMM1   # spill
13c     imull   R11, R10    # int
140     movl    [rsp + #52], R11    # spill
145     movl    R11, R8 # spill
148     addl    R11, #6 # int
14c     movdl   R10, XMM4   # spill
151     imull   R10, R11    # int
155     movl    [rsp + #56], R10    # spill
15a     movl    R10, R8 # spill
15d     addl    R10, #5 # int
161     movdl   R11, XMM6   # spill
166     imull   R11, R10    # int
16a     movl    [rsp + #60], R11    # spill
16f     movl    R11, R8 # spill
172     addl    R11, #4 # int
176     imull   RBX, R11    # int
17a     movl    R11, R8 # spill
17d     addl    R11, #3 # int
181     imull   RCX, R11    # int
185     movl    R10, R8 # spill
188     addl    R10, #2 # int
18c     imull   RDX, R10    # int
190     movl    R11, R8 # spill
193     incl    R11 # int
196     imull   R9, R11 # int
19a     addl    R9, [RSP + #32 (32-bit)]    # int
19f     addl    R9, RDX # int
1a2     addl    R9, RCX # int
1a5     addl    R9, RBX # int
1a8     addl    R9, [RSP + #60 (32-bit)]    # int
1ad     addl    R9, [RSP + #56 (32-bit)]    # int
1b2     addl    R9, [RSP + #52 (32-bit)]    # int
1b7     addl    R9, [RSP + #48 (32-bit)]    # int
1bc     movl    R10, R8 # spill
1bf     addl    R10, #9 # int
1c3     imull   R10, RSI    # int
1c7     addl    R10, R9 # int
1ca     addl    R10, RDI    # int
1cd     addl    R10, [RSP + #44 (32-bit)]   # int
1d2     movl    R11, R8 # spill
1d5     addl    R11, #12    # int
1d9     imull   R13, R11    # int
1dd     addl    R13, R10    # int
1e0     movl    R10, R8 # spill
1e3     addl    R10, #13    # int
1e7     imull   R10, [RSP + #40 (32-bit)]   # int
1ed     addl    R10, R13    # int
1f0     addl    RBP, R10    # int
1f3     addl    R14, RBP    # int
1f6     movl    R10, R8 # spill
1f9     addl    R10, #16    # int
1fd     cmpl    R10, #999999985
204     jl     B2   # loop end  P=1.000000 C=7419903.000000

在这里,我们观察到更多的溢出以及对堆栈的更多访问 [RSP + ...] ,由于需要保留的更多中间结果。

Here we observe much more "spilling" and more accesses to the stack [RSP + ...], due to more intermediate results that need to be preserved.

因此问题的答案很简单: 2 *(i * i) 2 * i * i 快,因为JIT为第一种情况生成了更优的汇编代码。

Thus the answer to the question is simple: 2 * (i * i) is faster than 2 * i * i because the JIT generates more optimal assembly code for the first case.

但很明显,第一版和第二版都没有任何好处;循环可以真正受益于矢量化,因为任何x86-64 CPU至少具有SSE2支持。

But of course it is obvious that neither the first nor the second version is any good; the loop could really benefit from vectorization, since any x86-64 CPU has at least SSE2 support.

所以这是优化器的一个问题;通常情况下,它会过于积极地展开并在脚下射击,一直错过各种其他机会。

So it's an issue of the optimizer; as is often the case, it unrolls too aggressively and shoots itself in the foot, all the while missing out on various other opportunities.

实际上,现代的x86-64 CPU将指令进一步细分为微操作(µ ops),并具有寄存器重命名,微操作和操作缓存以及循环缓冲等功能,循环优化比简单展开以获得最佳性能要精细得多。 :

In fact, modern x86-64 CPUs break down the instructions further into micro-ops (µops) and with features like register renaming, µop caches and loop buffers, loop optimization takes a lot more finesse than a simple unrolling for optimal performance. According to Agner Fog's optimization guide:


  • 确保关键循环足够小以适应μop缓存。

  • 将最关键的循环条目和函数条目与32对齐。

  • 避免不必要的循环展开。

  • 避免使用额外加载时间的指令

    。 。 。

  • Make sure that critical loops are small enough to fit into the µop cache.
  • Align the most critical loop entries and function entries by 32.
  • Avoid unnecessary loop unrolling.
  • Avoid instructions that have extra load time
    . . .

关于这些加载时间 - ,一个额外的寄存器和µ op,所以是的,甚至一些访问内存会损害紧密循环中的性能。

Regarding those load times - even the fastest L1D hit costs 4 cycles, an extra register and µop, so yes, even a few accesses to memory will hurt performance in tight loops.

但回到矢量化机会 - 看它有多快,,它直接对它进行矢量化(AVX2显示,SSE2类似) :

But back to the vectorization opportunity - to see how fast it can be, we can compile a similar C application with GCC, which outright vectorizes it (AVX2 is shown, SSE2 is similar):

  vmovdqa ymm0, YMMWORD PTR .LC0[rip]
  vmovdqa ymm3, YMMWORD PTR .LC1[rip]
  xor eax, eax
  vpxor xmm2, xmm2, xmm2
.L2:
  vpmulld ymm1, ymm0, ymm0
  inc eax
  vpaddd ymm0, ymm0, ymm3
  vpslld ymm1, ymm1, 1
  vpaddd ymm2, ymm2, ymm1
  cmp eax, 125000000      ; 8 calculations per iteration
  jne .L2
  vmovdqa xmm0, xmm2
  vextracti128 xmm2, ymm2, 1
  vpaddd xmm2, xmm0, xmm2
  vpsrldq xmm0, xmm2, 8
  vpaddd xmm0, xmm2, xmm0
  vpsrldq xmm1, xmm0, 4
  vpaddd xmm0, xmm0, xmm1
  vmovd eax, xmm0
  vzeroupper

运行时间:


  • SSE:0.24 s,或者快2倍。

  • AVX:0.15秒,或者快3倍。

  • AVX2:0.08秒,或者快5倍。

这篇关于为什么2 *(i * i)比Java中的2 * i * i更快?的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持!

08-15 17:20