MulDiv并处理中间乘法的溢出

MulDiv并处理中间乘法的溢出

本文介绍了(a * b)/ c MulDiv并处理中间乘法的溢出的处理方法,对大家解决问题具有一定的参考价值,需要的朋友们下面随着小编来一起学习吧!

问题描述

我需要做以下算术运算:

I need to do the following arithmetic:

long a,b,c;
long result = a*b/c;

虽然结果保证适合 long

While the result is guaranteed to fit in long, the multiplication is not, so it can overflow.

我尝试逐步(先乘后除),然后通过拆分来处理溢出。 a * b 转换为最大大小为4的int数组的中间结果(就像BigInteger使用其 int [] mag 变量)。

I tried to do it step by step (first multiply and then divide) while dealing with the overflow by splitting the intermediate result of a*b into an int array in size of max 4 ( much like the BigInteger is using its int[] mag variable).

在这里,我陷入了分裂。我无法理解进行精确除法所需的按位移位。我需要的只是商数(不需要余数)。

Here I got stuck with the division. I cannot get my head around the bitwise shifts required to do a precise division. All I need is the quotient (don't need the remainder).

假设的方法是:

public static long divide(int[] dividend, long divisor)

此外,我不考虑使用 BigInteger ,因为这部分代码需要快速运行(我想坚持使用基本体和基本体数组)。

Also, I am not considering using BigInteger as this part of the code needs to be fast ( I would like to stick to using primitives and primitive arrays).

任何帮助将不胜感激!

编辑:
我不打算实现整个 BigInteger 我自己。我正在尝试解决一个特定的问题( a * b / c ,其中 a * b 可以溢出)比使用通用 BigInteger 更快。

I am not trying to implement the whole BigInteger myself. What I am trying to do is to solve a specific problem (a*b/c, where a*b can overflow) faster than using the generic BigInteger.

Edit2:如果可以在聪明的方式是,一点都没有溢出,评论中出现了一些技巧,但我仍然在寻找正确的技巧。

It would be ideal if it could be done in a clever way, by not getting overflow at all, some tips surfaced in the comments, but I am still looking for one that is correct.

更新
我尝试将BigInteger代码移植到我的特定需求,而没有创建对象,并且在第一次迭代中,与使用BigInteger相比,我的速度提高了约46%(在我的开发中

Update:I tried to port BigInteger code to my specific needs, without object creation, and in the first iteration, I got ~46% improvement in speed comparing to using BigInteger (on my development pc).

然后我尝试了一些修改过的@David Eisenstat解决方案,这给了我约56%的费用(我从 Long中随机运行了100_000_000_000个输入。 MIN_VALUE Long.MAX_VALUE )与BigInteger相比,运行时间减少了2倍以上(与我使用的BigInteger算法相比,减少了18%)

Then I tried a bit modified @David Eisenstat solution, which gave me ~56 % (I ran 100_000_000_000 random inputs from Long.MIN_VALUE to Long.MAX_VALUE) reduced run times(more than 2x) comparing to BigInteger (that is ~18% compared to my adapted BigInteger algo).

关于优化和测试的迭代将会更多,但是在这一点上,我认为我必须接受这个答案是最好的。

There will be more iterations on optimization and testing, but at this point, I think I must accept this answer as the best.

推荐答案

我一直在修补一种方法( 1)将 a b 乘以21位肢的学校算法(2)进行长除法 c ,使用 a * b-c * q 的不寻常表示> double 存储高位,而 long 存储低位。我不知道它是否可以与标准的长距离比赛竞争,但是为了您的享受,

I've been tinkering with an approach that (1) multiplies a and b with the school algorithm on 21-bit limbs (2) proceeds to do long division by c, with an unusual representation of the residual a*b - c*q that uses a double to store the high-order bits and a long to store the low-order bits. I don't know if it can be made to be competitive with standard long division, but for your enjoyment,

public class MulDiv {
  public static void main(String[] args) {
    java.util.Random r = new java.util.Random();
    for (long i = 0; true; i++) {
      if (i % 1000000 == 0) {
        System.err.println(i);
      }
      long a = r.nextLong() >> (r.nextInt(8) * 8);
      long b = r.nextLong() >> (r.nextInt(8) * 8);
      long c = r.nextLong() >> (r.nextInt(8) * 8);
      if (c == 0) {
        continue;
      }
      long x = mulDiv(a, b, c);
      java.math.BigInteger aa = java.math.BigInteger.valueOf(a);
      java.math.BigInteger bb = java.math.BigInteger.valueOf(b);
      java.math.BigInteger cc = java.math.BigInteger.valueOf(c);
      java.math.BigInteger xx = aa.multiply(bb).divide(cc);
      if (java.math.BigInteger.valueOf(xx.longValue()).equals(xx) && x != xx.longValue()) {
        System.out.printf("a=%d b=%d c=%d: %d != %s\n", a, b, c, x, xx);
      }
    }
  }

  // Returns truncate(a b/c), subject to the precondition that the result is
  // defined and can be represented as a long.
  private static long mulDiv(long a, long b, long c) {
    // Decompose a.
    long a2 = a >> 42;
    long a10 = a - (a2 << 42);
    long a1 = a10 >> 21;
    long a0 = a10 - (a1 << 21);
    assert a == (((a2 << 21) + a1) << 21) + a0;
    // Decompose b.
    long b2 = b >> 42;
    long b10 = b - (b2 << 42);
    long b1 = b10 >> 21;
    long b0 = b10 - (b1 << 21);
    assert b == (((b2 << 21) + b1) << 21) + b0;
    // Compute a b.
    long ab4 = a2 * b2;
    long ab3 = a2 * b1 + a1 * b2;
    long ab2 = a2 * b0 + a1 * b1 + a0 * b2;
    long ab1 = a1 * b0 + a0 * b1;
    long ab0 = a0 * b0;
    // Compute a b/c.
    DivBy d = new DivBy(c);
    d.shift21Add(ab4);
    d.shift21Add(ab3);
    d.shift21Add(ab2);
    d.shift21Add(ab1);
    d.shift21Add(ab0);
    return d.getQuotient();
  }
}

public strictfp class DivBy {
  // Initializes n <- 0.
  public DivBy(long d) {
    di = d;
    df = (double) d;
    oneOverD = 1.0 / df;
  }

  // Updates n <- 2^21 n + i. Assumes |i| <= 3 (2^42).
  public void shift21Add(long i) {
    // Update the quotient and remainder.
    q <<= 21;
    ri = (ri << 21) + i;
    rf = rf * (double) (1 << 21) + (double) i;
    reduce();
  }

  // Returns truncate(n/d).
  public long getQuotient() {
    while (rf != (double) ri) {
      reduce();
    }
    // Round toward zero.
    if (q > 0) {
      if ((di > 0 && ri < 0) || (di < 0 && ri > 0)) {
        return q - 1;
      }
    } else if (q < 0) {
      if ((di > 0 && ri > 0) || (di < 0 && ri < 0)) {
        return q + 1;
      }
    }
    return q;
  }

  private void reduce() {
    // x is approximately r/d.
    long x = Math.round(rf * oneOverD);
    q += x;
    ri -= di * x;
    rf = repairLowOrderBits(rf - df * (double) x, ri);
  }

  private static double repairLowOrderBits(double f, long i) {
    int e = Math.getExponent(f);
    if (e < 64) {
      return (double) i;
    }
    long rawBits = Double.doubleToRawLongBits(f);
    long lowOrderBits = (rawBits >> 63) ^ (rawBits << (e - 52));
    return f + (double) (i - lowOrderBits);
  }

  private final long di;
  private final double df;
  private final double oneOverD;
  private long q = 0;
  private long ri = 0;
  private double rf = 0;
}

这篇关于(a * b)/ c MulDiv并处理中间乘法的溢出的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持!

08-01 22:26