本文介绍了如何将数据分割成3套(列车,验证和测试)?的处理方法,对大家解决问题具有一定的参考价值,需要的朋友们下面随着小编来一起学习吧!

问题描述

我有一个熊猫数据框,我希望把它分成3个不同的集合。我知道使用从 sklearn.cross_validation ,可以将数据分为两组(列车和测试)。但是,我找不到有关将数据分成三组的任何解决方案。最好,我想拥有原始数据的索引。



我知道解决方法是使用 train_test_split 两次,以某种方式调整索引。但是有更多的标准/内置方式将数据分成3组而不是2组。

解决方案

Numpy解决方案感谢



这是一个小的演示, np.split()使用 - 我们将20元素数组拆分成以下部分:90%,10%,10%:

 在[45] :a = np.arange(1,21)

在[46]中:a
输出[46]:数组([1,2,3,4,5,6,7 ,8,9,10,11,12,13,14,15,16,17, 18,19,20])

在[47]中:np.split(a,[int(.8 * len(a)),int(.9 * len(a))]
Out [47]:
[array([1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16]] ,
数组([17,18]),
数组([19,20])]


I have a pandas dataframe and I wish to divide it to 3 separate sets. I know that using train_test_split from sklearn.cross_validation, one can divide the data in two sets (train and test). However, I couldn't find any solution about splitting the data into three sets. Preferably, I'd like to have the indices of the original data.

I know that a workaround would be to use train_test_split two times and somehow adjust the indices. But is there a more standard / built-in way to split the data into 3 sets instead of 2?

解决方案

Numpy solution (thanks to root for the randomizing hint) - we will split our data set into the following parts: (60% - train set, 20% - validation set, 20% - test set):

In [305]: train, validate, test = np.split(df.sample(frac=1), [int(.6*len(df)), int(.8*len(df))])

In [306]: train
Out[306]:
          A         B         C         D         E
0  0.046919  0.792216  0.206294  0.440346  0.038960
2  0.301010  0.625697  0.604724  0.936968  0.870064
1  0.642237  0.690403  0.813658  0.525379  0.396053
9  0.488484  0.389640  0.599637  0.122919  0.106505
8  0.842717  0.793315  0.554084  0.100361  0.367465
7  0.185214  0.603661  0.217677  0.281780  0.938540

In [307]: validate
Out[307]:
          A         B         C         D         E
5  0.806176  0.008896  0.362878  0.058903  0.026328
6  0.145777  0.485765  0.589272  0.806329  0.703479

In [308]: test
Out[308]:
          A         B         C         D         E
4  0.521640  0.332210  0.370177  0.859169  0.401087
3  0.333348  0.964011  0.083498  0.670386  0.169619

PS [int(.6*len(df)), int(.8*len(df))] - is an indices_or_sections array for numpy.split()

Here is a small demo for np.split() usage - let's split 20-elements array into the following parts: 90%, 10%, 10%:

In [45]: a = np.arange(1, 21)

In [46]: a
Out[46]: array([ 1,  2,  3,  4,  5,  6,  7,  8,  9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20])

In [47]: np.split(a, [int(.8 * len(a)), int(.9 * len(a))])
Out[47]:
[array([ 1,  2,  3,  4,  5,  6,  7,  8,  9, 10, 11, 12, 13, 14, 15, 16]),
 array([17, 18]),
 array([19, 20])]

这篇关于如何将数据分割成3套(列车,验证和测试)?的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持!

08-01 20:31