问题描述
我使用了多级分类,所以为了测试之后评价它,我需要从分类器predictions( Y_ preD
)反对真正的类值进行比较( y_test
)。
I'm using a multi-class classifier, so in order to evaluate it after testing, I need the predictions from the classifier (y_pred
)to be compared against the true class values (y_test
).
但我有他们两个一维数组,像这样:
But I have them both as 1D arrays, like so:
y_test = [1, 1, 1, 2, 1, 4, 5, 3, ... etc ]
y_pred = [1, 1, 1, 2, 3, 2, 5, 0, ... etc ]
在我总共有46类。
但为了建立ROC曲线(在这里:),我猜我需要的 y_test
和 Y_ preD
以与二进制值的二维矩阵,以下形状: number_of_test_cases点¯xnumber_of_classes
。
But in order to build ROC curves (as in here: http://scikit-learn.org/stable/auto_examples/plot_roc.html), I'm guessing I need the y_test
and y_pred
to be in a 2D matrix with binary values, of the following shape:number_of_test_cases x number_of_classes
.
每列重presents一个类,并重新1 presents的分类识别给定的测试样品行此类的事实。
Where each column represents one class, and 1 represents the fact that the classifier recognized this class on the given test sample row.
因此,考虑上述几个值我发现,我明白我需要y_test看起来是这样的:
So given the above few values I showed, I understand I need y_test to look something like this:
y_test = [ 1 0 ...
1 0
1 0
0 1
1 0
0 1
0 0
0 0
...
这是我的理解...我希望我是对的!
This is what I understand... I hope I'm right!
是否有任何 numpy的
函数来创建从一维数组这样的矩阵?
Is there any numpy
function to create such a matrix from a 1D array?
推荐答案
有一个看的是在例子code引用您的链接功能。
Have a look at the label_binarize
function that's referenced in the example code in your link.
这篇关于转换一个一维数组在Python 2D基于类的矩阵的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持!