问题描述
我用 timeit 得到了非常令人惊讶的结果,有人能告诉我我做错了什么吗?我使用的是 Python 2.7.
这是文件speedtest_init.py的内容:
随机导入to_count = [random.randint(0, 100) for r in range(60)]
这些是speedtest.py的内容:
__author__ = 'BlueTrin'导入时间def test_init1():打印(timeit.timeit('导入speedtest_init'))def test_counter1():s = """d = defaultdict(int);对于我在 speedtest_init.to_count 中:d[i] += 1"""打印(timeit.timeit(s,'从集合导入defaultdict;导入speedtest_init;'))def test_counter2():print(timeit.timeit('d = Counter(speedtest_init.to_count);', 'from collections import Counter; import speedtest_init;'))如果 __name__ == "__main__":test_init1()test_counter1()test_counter2()
控制台输出为:
C:Python27python.exe C:/Dev/codility/chlorum2014/speedtest.py2.7150196293165.709044450391.2953839048进程完成,退出代码 0
我认为默认情况下 timeit() 运行代码的 1000000 倍,所以我需要将时间除以 1000000,但令人惊讶的是 Counter 比 defaultdict() 慢.
这是预期的吗?
同样使用 dict 比使用 defaultdict(int) 更快:
def test_counter3():s = """d = {};对于我在 speedtest_init.to_count 中:如果我不在 d:d[i] = 1别的:d[i] += 1"""打印(timeit.timeit(stmt=s, setup='from collections import defaultdict; import speedtest_init;')
最后一个版本比 defaultdict(int) 更快,这意味着除非您更关心可读性,否则您应该使用 dict() 而不是 defaultdict().
是的,这是意料之中的;Counter()
constructor 使用 Counter.update()
它使用 self.get()
加载初始值而不是依赖 __missing__
.
此外,defaultdict
__missing__
工厂完全在 C 代码中处理,尤其是在使用另一种类型(如自身实现的 int()
)时在 C 中.Counter
源是纯 Python,因此 Counter.__missing__
方法需要一个 Python 框架来执行.
因为 dict.get()
仍然在 C 中处理,构造方法是 Counter()
的更快方法,前提是您使用相同的技巧 Counter.update()
使用和别名 self.get
查找作为本地优先:
defaultdict
和 Counter
都是为其功能而非性能而构建的有用类;不依赖 __missing__
钩子可以更快:
这是一个常规字典,使用别名 dict.get()
方法以获得最大速度.但是,您还必须重新实现 Counter
或 Counter.most_common()
方法的包行为.defaultdict
用例远不止计数.
在 Python 3.2 中,通过添加处理这种情况的 C 库,更新 Counter()
获得了速度提升;请参阅问题 10667.在 Python 3.4 上测试,Counter()
构造函数现在击败了别名 dict.get
案例:
(注意:为了获得有意义的计时结果,迭代次数从 10k 增加到 100k;因此,如果您将这些与上面的 dict.get()
情况进行比较,您需要采取计时有十次,在 1.144 秒).
I obtained very surprising results with timeit, can someone tell me if I am doing something wrong ? I am using Python 2.7.
This is the contents of file speedtest_init.py:
import random
to_count = [random.randint(0, 100) for r in range(60)]
These are the contents of speedtest.py:
__author__ = 'BlueTrin'
import timeit
def test_init1():
print(timeit.timeit('import speedtest_init'))
def test_counter1():
s = """
d = defaultdict(int);
for i in speedtest_init.to_count:
d[i] += 1
"""
print(timeit.timeit(s, 'from collections import defaultdict; import speedtest_init;'))
def test_counter2():
print(timeit.timeit('d = Counter(speedtest_init.to_count);', 'from collections import Counter; import speedtest_init;'))
if __name__ == "__main__":
test_init1()
test_counter1()
test_counter2()
The console output is:
C:Python27python.exe C:/Dev/codility/chlorum2014/speedtest.py
2.71501962931
65.7090444503
91.2953839048
Process finished with exit code 0
I think by default timeit() runs 1000000 times the code, so I need to divide the times by 1000000, but what is surprising is that the Counter is slower than the defaultdict().
Is that expected ?
EDIT:
Also using a dict is faster than a defaultdict(int):
def test_counter3():
s = """
d = {};
for i in speedtest_init.to_count:
if i not in d:
d[i] = 1
else:
d[i] += 1
"""
print(timeit.timeit(stmt=s, setup='from collections import defaultdict; import speedtest_init;')
this last version is faster than the defaultdict(int) meaning that unless you care more about readability you should use the dict() rather than the defaultdict().
Yes, this is expected; the Counter()
constructor uses Counter.update()
which uses self.get()
to load initial values rather than rely on __missing__
.
Moreover, the defaultdict
__missing__
factory is handled entirely in C code, especially when using another type like int()
that is itself implemented in C. The Counter
source is pure Python and as such the Counter.__missing__
method requires a Python frame to execute.
Because dict.get()
is still handled in C, the constructor approach is the faster approach for a Counter()
, provided you use the same trick Counter.update()
uses and alias the self.get
lookup as a local first:
>>> import timeit
>>> import random
>>> import sys
>>> sys.version_info
sys.version_info(major=2, minor=7, micro=9, releaselevel='final', serial=0)
>>> to_count = [random.randint(0, 100) for r in range(60)]
>>> timeit.timeit('for i in to_count: c[i] += 1',
... 'from collections import Counter; from __main__ import to_count; c = Counter()',
... number=10000)
0.2510359287261963
>>> timeit.timeit('for i in to_count: c[i] = c_get(i, 0) + 1',
... 'from collections import Counter; from __main__ import to_count; c = Counter(); c_get = c.get',
... number=10000)
0.20978617668151855
Both defaultdict
and Counter
are helpful classes built for their functionality, not their performance; not relying on the __missing__
hook can be faster still:
>>> timeit.timeit('for i in to_count: d[i] = d_get(i, 0) + 1',
... 'from __main__ import to_count; d = {}; d_get = d.get',
... number=10000)
0.11437392234802246
That's a regular dictionary using an aliased dict.get()
method for maximum speed. But then you'll also have to re-implement the bag behaviour of Counter
, or the Counter.most_common()
method. The defaultdict
use cases go way beyond counting.
In Python 3.2, updating a Counter()
got a speed boost by adding a C library that handles this case; see issue 10667. Testing on Python 3.4, the Counter()
constructor now beats the aliased dict.get
case:
>>> timeit.timeit('Counter(to_count)',
... 'from collections import Counter; from __main__ import to_count',
... number=100000)
0.8332311600097455
>>> timeit.timeit('for i in to_count: d[i] = d_get(i, 0) + 1',
... 'from __main__ import to_count; d = {}; d_get = d.get',
... number=100000)
0.961191965994658
>>> import sys
>>> sys.version_info
sys.version_info(major=3, minor=4, micro=2, releaselevel='final', serial=0)
(Note: to get a meaningful timing result the number of iterations was increased from 10k to 100k; so if you compare these against the dict.get()
case above you need to take the timing there times ten, at 1.144 seconds).
这篇关于Python timeit 的惊人结果:Counter() vs defaultdict() vs dict()的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持!