问题描述
我感兴趣的是根据一系列参数值的排列来计算函数.我想让它对N个维度通用,但是让我从3个维度开始写出来.使用meshgrid
生成排列很容易,但是我不知道如何将结果数组重塑为多维?这是一个起点:
I am interested in calculating a function on a bunch of permutations of parameter values. I want to keep it generic to N dimensions, but let me write it out in 3 dimensions to start with. Generating the permutations is easy enough with meshgrid
, but I can't figure out how to reshape the resulting array back to the multidimensions? Here is a starting point:
%These are the 3 variations of parameters, with some values.
params1 = [100, 200, 300];%Picking these so it is easy to correlate to the function
params2 = [10, 20];
params3 = [1, 2];
%This generates parameter_values as the cartesian productpermutations.
[vec1, vec2, vec3] = meshgrid(params1, params2, params3);
parameter_values = [vec1(:) vec2(:) vec3(:)];
%Calculates functions on the set of parameters.
%Would have a fancier function, of course, this just makes it easy to see the results.
raw_vals = parameter_values(:,1) + parameter_values(:,2) + parameter_values(:,3);
%Rearrange into a multiarray to access by parameter indices.
f_vals = reshape(raw_vals, [length(params1), length(params2), length(params3)]) %WRONG?
%THE FOLLOWING FAIL BUT WOULD BE EXPECTED WITH THESE PARAMETERS AND THE FUNCTION.
assert(f_vals(2,1,1) == 211)
assert(f_vals(3,2,2) == 322)
推荐答案
您要在这种情况下,使用ndgrid
代替 meshgrid
meshgrid
的语法为[X,Y] = meshgrid(xgv,ygv)
,这会导致Y(:)
变化最快,而不是X(:)
.有关更多详细信息,请参见网格数据表示. .换句话说,您正在得到
meshgrid
's syntax is [X,Y] = meshgrid(xgv,ygv)
which causes Y(:)
to vary fastest rather than X(:)
. See Gridded Data Representation for more details. In other words, you are getting
>> [vec1, vec2, vec3] = meshgrid(params1, params2, params3)
vec1(:,:,1) =
100 200 300
100 200 300
vec1(:,:,2) =
100 200 300
100 200 300
vec2(:,:,1) =
10 10 10
20 20 20
vec2(:,:,2) =
10 10 10
20 20 20
...
但是你想得到:
>> [vec1, vec2, vec3] = ndgrid(params1, params2, params3)
vec1(:,:,1) =
100 100
200 200
300 300
vec1(:,:,2) =
100 100
200 200
300 300
vec2(:,:,1) =
10 20
10 20
10 20
vec2(:,:,2) =
10 20
10 20
10 20
...
如果切换到ndgrid
,则将得到预期的f_vals(2,1,1) == 211
.
If you switch to ndgrid
, then you get f_vals(2,1,1) == 211
as intended.
可以概括为N维:
params = {[100, 200, 300],[10, 20],[1, 2]};
vecs = cell(numel(params),1);
[vecs{:}] = ndgrid(params{:});
parameter_values = reshape(cat(numel(vecs)+1,vecs{:}),[],numel(vecs));
raw_vals = sum(parameter_values,2);
f_vals = reshape(raw_vals,cellfun(@numel,params))
这篇关于将参数(即笛卡尔积)排列成多维数组的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持!