本文介绍了在Apache Spark Join中包含空值的处理方法,对大家解决问题具有一定的参考价值,需要的朋友们下面随着小编来一起学习吧!

问题描述

我想在Apache Spark连接中包含空值.默认情况下,Spark不包含具有null的行.

I would like to include null values in an Apache Spark join. Spark doesn't include rows with null by default.

这是默认的Spark行为.

Here is the default Spark behavior.

val numbersDf = Seq(
  ("123"),
  ("456"),
  (null),
  ("")
).toDF("numbers")

val lettersDf = Seq(
  ("123", "abc"),
  ("456", "def"),
  (null, "zzz"),
  ("", "hhh")
).toDF("numbers", "letters")

val joinedDf = numbersDf.join(lettersDf, Seq("numbers"))

这是joinedDf.show()的输出:

+-------+-------+
|numbers|letters|
+-------+-------+
|    123|    abc|
|    456|    def|
|       |    hhh|
+-------+-------+

这是我想要的输出:

+-------+-------+
|numbers|letters|
+-------+-------+
|    123|    abc|
|    456|    def|
|       |    hhh|
|   null|    zzz|
+-------+-------+

推荐答案

Spark提供了一种特殊的NULL安全相等运算符:

Spark provides a special NULL safe equality operator:

numbersDf
  .join(lettersDf, numbersDf("numbers") <=> lettersDf("numbers"))
  .drop(lettersDf("numbers"))
+-------+-------+
|numbers|letters|
+-------+-------+
|    123|    abc|
|    456|    def|
|   null|    zzz|
|       |    hhh|
+-------+-------+

请注意不要将其与Spark 1.5或更早版本一起使用.在Spark 1.6之前,它需要笛卡尔积( SPARK-11111 -快速的空安全联接).

Be careful not to use it with Spark 1.5 or earlier. Prior to Spark 1.6 it required a Cartesian product (SPARK-11111 - Fast null-safe join).

Spark 2.3.0 或更高版本中,您可以在 PySpark 中使用Column.eqNullSafe:

In Spark 2.3.0 or later you can use Column.eqNullSafe in PySpark:

numbers_df = sc.parallelize([
    ("123", ), ("456", ), (None, ), ("", )
]).toDF(["numbers"])

letters_df = sc.parallelize([
    ("123", "abc"), ("456", "def"), (None, "zzz"), ("", "hhh")
]).toDF(["numbers", "letters"])

numbers_df.join(letters_df, numbers_df.numbers.eqNullSafe(letters_df.numbers))
+-------+-------+-------+
|numbers|numbers|letters|
+-------+-------+-------+
|    456|    456|    def|
|   null|   null|    zzz|
|       |       |    hhh|
|    123|    123|    abc|
+-------+-------+-------+

SparkR 中的

%<=>%:

numbers_df <- createDataFrame(data.frame(numbers = c("123", "456", NA, "")))
letters_df <- createDataFrame(data.frame(
  numbers = c("123", "456", NA, ""),
  letters = c("abc", "def", "zzz", "hhh")
))

head(join(numbers_df, letters_df, numbers_df$numbers %<=>% letters_df$numbers))
  numbers numbers letters
1     456     456     def
2    <NA>    <NA>     zzz
3                     hhh
4     123     123     abc

通过 SQL ( Spark 2.2.0 + ),您可以使用IS NOT DISTINCT FROM:

With SQL (Spark 2.2.0+) you can use IS NOT DISTINCT FROM:

SELECT * FROM numbers JOIN letters
ON numbers.numbers IS NOT DISTINCT FROM letters.numbers

这也可以与DataFrame API一起使用:

This is can be used with DataFrame API as well:

numbersDf.alias("numbers")
  .join(lettersDf.alias("letters"))
  .where("numbers.numbers IS NOT DISTINCT FROM letters.numbers")

这篇关于在Apache Spark Join中包含空值的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持!

08-01 04:56