数据帧中的行和列

数据帧中的行和列

本文介绍了迭代 Spark 数据帧中的行和列的处理方法,对大家解决问题具有一定的参考价值,需要的朋友们下面随着小编来一起学习吧!

问题描述

我有以下动态创建的 Spark 数据框:

I have the following Spark dataframe that is created dynamically:

val sf1 = StructField("name", StringType, nullable = true)
val sf2 = StructField("sector", StringType, nullable = true)
val sf3 = StructField("age", IntegerType, nullable = true)

val fields = List(sf1,sf2,sf3)
val schema = StructType(fields)

val row1 = Row("Andy","aaa",20)
val row2 = Row("Berta","bbb",30)
val row3 = Row("Joe","ccc",40)

val data = Seq(row1,row2,row3)

val df = spark.createDataFrame(spark.sparkContext.parallelize(data), schema)

df.createOrReplaceTempView("people")
val sqlDF = spark.sql("SELECT * FROM people")

现在,我需要迭代sqlDF中的每一行和每一列来打印每一列,这是我的尝试:

Now, I need to iterate each row and column in sqlDF to print each column, this is my attempt:

sqlDF.foreach { row =>
  row.foreach { col => println(col) }
}

rowRow 类型,但不可迭代,这就是为什么这段代码会在 row.foreach 中引发编译错误.如何迭代Row中的每一列?

row is type Row, but is not iterable that's why this code throws a compilation error in row.foreach. How to iterate each column in Row?

推荐答案

您可以使用 toSeqRow 转换为 Seq.一旦转向 Seq,你可以像往常一样使用 foreachmap 或任何你需要的东西

You can convert Row to Seq with toSeq. Once turned to Seq you can iterate over it as usual with foreach, map or whatever you need

    sqlDF.foreach { row =>
           row.toSeq.foreach{col => println(col) }
    }

输出:

Berta
bbb
30
Joe
Andy
aaa
20
ccc
40

这篇关于迭代 Spark 数据帧中的行和列的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持!

08-01 04:49