问题描述
我已经从SQLServer表中加载了DataFrame.看起来像这样:
I've loaded a DataFrame from a SQLServer table. It looks like this:
>>> df.show()
+--------------------+----------+
| timestamp| Value |
+--------------------+----------+
|2015-12-02 00:10:...| 652.8|
|2015-12-02 00:20:...| 518.4|
|2015-12-02 00:30:...| 524.6|
|2015-12-02 00:40:...| 382.9|
|2015-12-02 00:50:...| 461.6|
|2015-12-02 01:00:...| 476.6|
|2015-12-02 01:10:...| 472.6|
|2015-12-02 01:20:...| 353.0|
|2015-12-02 01:30:...| 407.9|
|2015-12-02 01:40:...| 475.9|
|2015-12-02 01:50:...| 513.2|
|2015-12-02 02:00:...| 569.0|
|2015-12-02 02:10:...| 711.4|
|2015-12-02 02:20:...| 457.6|
|2015-12-02 02:30:...| 392.0|
|2015-12-02 02:40:...| 459.5|
|2015-12-02 02:50:...| 560.2|
|2015-12-02 03:00:...| 252.9|
|2015-12-02 03:10:...| 228.7|
|2015-12-02 03:20:...| 312.2|
+--------------------+----------+
现在,我想按小时(或日,月或月...)对值进行分组(和求和),但是我真的不知道如何执行此操作.
Now I'd like to group (and sum) values by hour (or day, or month or...), but I don't really have a clue about how can I do that.
这就是我加载DataFrame的方式.我感觉这不是正确的方法,但是:
That's how I load the DataFrame. I've got the feeling that this isn't the right way to do it, though:
query = """
SELECT column1 AS timestamp, column2 AS value
FROM table
WHERE blahblah
"""
sc = SparkContext("local", 'test')
sqlctx = SQLContext(sc)
df = sqlctx.load(source="jdbc",
url="jdbc:sqlserver://<CONNECTION_DATA>",
dbtable="(%s) AS alias" % query)
可以吗?
推荐答案
自1.5.0起,Spark提供了许多功能,例如dayofmonth
,hour
,month
或year
,它们可以在日期和时间戳上运行. .因此,如果timestamp
是TimestampType
,则只需要一个正确的表达式即可.例如:
Since 1.5.0 Spark provides a number of functions like dayofmonth
, hour
, month
or year
which can operate on dates and timestamps. So if timestamp
is a TimestampType
all you need is a correct expression. For example:
from pyspark.sql.functions import hour, mean
(df
.groupBy(hour("timestamp").alias("hour"))
.agg(mean("value").alias("mean"))
.show())
## +----+------------------+
## |hour| mean|
## +----+------------------+
## | 0|508.05999999999995|
## | 1| 449.8666666666666|
## | 2| 524.9499999999999|
## | 3|264.59999999999997|
## +----+------------------+
1.5.0之前的版本,最好的选择是将HiveContext
和Hive UDF与selectExpr
一起使用:
Pre-1.5.0 your best option is to use HiveContext
and Hive UDFs either with selectExpr
:
df.selectExpr("year(timestamp) AS year", "value").groupBy("year").sum()
## +----+---------+----------+
## |year|SUM(year)|SUM(value)|
## +----+---------+----------+
## |2015| 40300| 9183.0|
## +----+---------+----------+
或原始SQL:
df.registerTempTable("df")
sqlContext.sql("""
SELECT MONTH(timestamp) AS month, SUM(value) AS values_sum
FROM df
GROUP BY MONTH(timestamp)""")
请记住,聚合是由Spark执行的,而不是下推到外部源.通常这是一种期望的行为,但是在某些情况下,您可能更愿意将聚合作为子查询来限制数据传输.
Just remember that aggregation is performed by Spark not pushed-down to the external source. Usually it is a desired behavior but there are situations when you may prefer to perform aggregation as a subquery to limit data transfer.
这篇关于按日期分组Spark数据帧的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持!