本文介绍了sparklyr更改所有列名称spark dataframe的处理方法,对大家解决问题具有一定的参考价值,需要的朋友们下面随着小编来一起学习吧!
问题描述
我打算更改所有列名。当前的重命名或选择操作太费力。我不知道是否有人有更好的解决方案。例如belwo:
I intended to change all column names. The current rename or select operation is too labouring. I dont know if anybody has a better solution. Examples as belwo:
df <- data.frame(oldname1 = LETTERS, oldname2 = 1,...oldname200 = "APPLE")
df_tbl <- copy_to(sc,df,"df")
newnamelist <- paste("Name", 1:200, sep ="_")
如何将newnamelist分配为新的姓氏?我可能无法做到这一点:
How do I assign newnamelist as the new colnames? I probably cant do this:
df_new <- df_tbl %>% dplyr::select(Name_1 = oldname1, Name_2 = oldname2,....)
推荐答案
您可以使用 select _
和 .dots
:
df <- copy_to(sc, iris)
newnames <- paste("Name", 1:5, sep="_")
df %>% select_(.dots=setNames(colnames(df), newnames))
# Source: lazy query [?? x 5]
# Database: spark_connection
Name_1 Name_2 Name_3 Name_4 Name_5
<dbl> <dbl> <dbl> <dbl> <chr>
1 5.1 3.5 1.4 0.2 setosa
2 4.9 3.0 1.4 0.2 setosa
3 4.7 3.2 1.3 0.2 setosa
4 4.6 3.1 1.5 0.2 setosa
5 5.0 3.6 1.4 0.2 setosa
6 5.4 3.9 1.7 0.4 setosa
7 4.6 3.4 1.4 0.3 setosa
8 5.0 3.4 1.5 0.2 setosa
9 4.4 2.9 1.4 0.2 setosa
10 4.9 3.1 1.5 0.1 setosa
您也可以选择
和 !!!
:
library(rlang)
library(purrr)
df %>% select(!!! setNames(map(colnames(df), parse_quosure), newnames))
# Source: lazy query [?? x 5]
# Database: spark_connection
Name_1 Name_2 Name_3 Name_4 Name_5
<dbl> <dbl> <dbl> <dbl> <chr>
1 5.1 3.5 1.4 0.2 setosa
2 4.9 3.0 1.4 0.2 setosa
3 4.7 3.2 1.3 0.2 setosa
4 4.6 3.1 1.5 0.2 setosa
5 5.0 3.6 1.4 0.2 setosa
6 5.4 3.9 1.7 0.4 setosa
7 4.6 3.4 1.4 0.3 setosa
8 5.0 3.4 1.5 0.2 setosa
9 4.4 2.9 1.4 0.2 setosa
10 4.9 3.1 1.5 0.1 setosa
# ... with more rows
这篇关于sparklyr更改所有列名称spark dataframe的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持!