问题描述
我正在尝试在如下嵌套字段上调用 partitionBy:
I am trying to call partitionBy on a nested field like below:
val rawJson = sqlContext.read.json(filename)
rawJson.write.partitionBy("data.dataDetails.name").parquet(filenameParquet)
运行时出现以下错误.我确实看到名称"列为以下架构中的字段.是否有不同的格式来指定嵌套的列名?
I get the below error when I run it. I do see the 'name' listed as the field in the below schema. Is there a different format to specify the column name which is nested?
java.lang.RuntimeException: 在架构 StructType(StructField(name,StringType,true), StructField(time,StringType,true), StructField(data,StructType(StructField(dataDetails,StructType(StructField(name,StringType,true), StructField(id,StringType,true),true)),true))
这是我的json文件:
This is my json file:
{
"name": "AssetName",
"time": "2016-06-20T11:57:19.4941368-04:00",
"data": {
"type": "EventData",
"dataDetails": {
"name": "EventName"
"id": "1234"
}
}
}
推荐答案
这似乎是此处列出的已知问题:https://issues.apache.org/jira/browse/SPARK-18084
This appears to be a known issue listed here: https://issues.apache.org/jira/browse/SPARK-18084
我也遇到了这个问题,为了解决这个问题,我能够在我的数据集上取消嵌套列.我的数据集与你的数据集略有不同,但这里是策略...
I had this issue as well and to work around it I was able to un-nest the columns on my dataset. My dataset was a little different than your dataset, but here is the strategy...
原始 Json:
{
"name": "AssetName",
"time": "2016-06-20T11:57:19.4941368-04:00",
"data": {
"type": "EventData",
"dataDetails": {
"name": "EventName"
"id": "1234"
}
}
}
修改后的 Json:
{
"name": "AssetName",
"time": "2016-06-20T11:57:19.4941368-04:00",
"data_type": "EventData",
"data_dataDetails_name" : "EventName",
"data_dataDetails_id": "1234"
}
}
获取修改后的 Json 的代码:
Code to get to Modified Json:
def main(args: Array[String]) {
...
val data = df.select(children("data", df) ++ $"name" ++ $"time"): _*)
data.printSchema
data.write.partitionBy("data_dataDetails_name").format("csv").save(...)
}
def children(colname: String, df: DataFrame) = {
val parent = df.schema.fields.filter(_.name == colname).head
val fields = parent.dataType match {
case x: StructType => x.fields
case _ => Array.empty[StructField]
}
fields.map(x => col(s"$colname.${x.name}").alias(s"$colname" + s"_" + s"${x.name}"))
}
这篇关于嵌套列上的 DataFrame partitionBy的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持!