问题描述
我有一个熊猫数据框,如下所示:
I have a pandas dataframe as below:
如何将所有列表(在"val"列中)合并为唯一列表(集合),例如[val1, val2, val33, val9, val6, val7]
?
How can I combine all the lists (in the 'val' column) into a unique list (set), e.g. [val1, val2, val33, val9, val6, val7]
?
我可以使用以下代码解决此问题.我想知道是否有一种更简单的方法来从列中获取所有唯一值而又不迭代数据框行?
I can solve this with the following code. I wonder if there is an easier way to get all unique values from a column without iterating the dataframe rows?
def_contributors=[]
for index, row in df.iterrows():
contri = ast.literal_eval(row['val'])
def_contributors.extend(contri)
def_contributors = list(set(def_contributors))
推荐答案
将Series
导出到嵌套的lists
然后将set
应用于拼合列表的另一种解决方案:
Another solution with exporting Series
to nested lists
and then apply set
to flatten list:
df = pd.DataFrame({'id':['a','b', 'c'], 'val':[['val1','val2'],
['val33','val9','val6'],
['val2','val6','val7']]})
print (df)
id val
0 a [val1, val2]
1 b [val33, val9, val6]
2 c [val2, val6, val7]
print (type(df.val.ix[0]))
<class 'list'>
print (df.val.tolist())
[['val1', 'val2'], ['val33', 'val9', 'val6'], ['val2', 'val6', 'val7']]
print (list(set([a for b in df.val.tolist() for a in b])))
['val7', 'val1', 'val6', 'val33', 'val2', 'val9']
时间:
df = pd.concat([df]*1000).reset_index(drop=True)
In [307]: %timeit (df['val'].apply(pd.Series).stack().unique()).tolist()
1 loop, best of 3: 410 ms per loop
In [355]: %timeit (pd.Series(sum(df.val.tolist(),[])).unique().tolist())
10 loops, best of 3: 31.9 ms per loop
In [308]: %timeit np.unique(np.hstack(df.val)).tolist()
100 loops, best of 3: 10.7 ms per loop
In [309]: %timeit (list(set([a for b in df.val.tolist() for a in b])))
1000 loops, best of 3: 558 µs per loop
如果类型不是list
而是string
,请使用 str.strip
和 str.split
:
If types is not list
but string
use str.strip
and str.split
:
df = pd.DataFrame({'id':['a','b', 'c'], 'val':["[val1,val2]",
"[val33,val9,val6]",
"[val2,val6,val7]"]})
print (df)
id val
0 a [val1,val2]
1 b [val33,val9,val6]
2 c [val2,val6,val7]
print (type(df.val.ix[0]))
<class 'str'>
print (df.val.str.strip('[]').str.split(','))
0 [val1, val2]
1 [val33, val9, val6]
2 [val2, val6, val7]
Name: val, dtype: object
print (list(set([a for b in df.val.str.strip('[]').str.split(',') for a in b])))
['val7', 'val1', 'val6', 'val33', 'val2', 'val9']
这篇关于Python Pandas:如何将一列中的所有列表编译为一个唯一列表的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持!