特别是随着工艺低的数字

特别是随着工艺低的数字

本文介绍了C,开放MPI:从通话分割过错MPI_Finalize()。段错误并不总是发生,特别是随着工艺低的数字的处理方法,对大家解决问题具有一定的参考价值,需要的朋友们下面随着小编来一起学习吧!

问题描述

我写一个简单的code来学习如何定义一个MPI_Datatype并与MPI_Gatherv一起使用。我想确保我能上的进程,这似乎是做工精细结合可变长​​度,结构化数据的动态分配数组,直到我呼吁MPI_Finalize()。我已经确认这是哪里出了问题首先使用打印语句和Eclipse PTP调试器体现出来(后端GDB-MI)。我的主要问题是,我怎么能摆脱分段错误的?

该段错误不会发生我每次运行code时间。例如,它并没有发生为2或3的过程,但往往当我用约4个或更多的进程运行经常发生。

此外,当我运行这个code。与Valgrind的,不会发生分段错误。不过,我得到的valgrind错误信息,但输出的是我很难理解,当我使用MPI函数,即使有大量的有针对性的SUP pressions的。我也担心,如果我用更多的SUP pressions,我会沉默有用的错误消息。

我编译使用这些标志正常code,所以我使用两种情况下的C99​​标准:
        -ansi -pedantic -Wall -O2 -march =巴塞罗那-fomit-frame-pointer的-std = C99
和调试code有:
        -ansi -pedantic -std = C99 -Wall -g

两者都使用GCC 4.4编译器mpicc,并使用Red Hat Linux和Open MPI v1.4.5在集群上运行。请让我知道如果我离开了其他信息的重要位。这里是code,并在此先感谢:

  //#包括LT&;&unistd.h中GT;
#包括LT&;&string.h中GT;
#包括LT&;&stdio.h中GT;
#包括LT&;&math.h中GT;
#包括LT&;&stdlib.h中GT;
//#包括LT&;&limits.h中GT;#包括mpi.h#定义FULL_PROGRAM 1结构CD {    INT int_ID;
    双dbl_ID;
};INT主(INT ARGC,CHAR *的argv []){    INT numprocs,身份识别码,错误code;#如果FULL_PROGRAM
    结构CD * MYDATA的= NULL; //每个进程有助于数据的阵列,由'结构CD元素
    结构CD * ALLDATA = NULL; //根将动态地分配这个数组从过程其余存储所有数据
    为int * p_lens = NULL,* p_disp = NULL; // p_lens存储在每个进程的数组元素数,p_disp存储在字节位移
    INT MPI_CD_size; //存储被定义使用'结构CD元素通信业务,允许MPI_Datatype的大小    INT mylen,total_len = 0; // mylen应每个过程的长度'阵列
                                        // MAXLEN是允许的最大数组长度
                                        // total_len将mylen的所有进程的总和    // ============涉及在运行时定义新MPI_Datatype变量============================ ========================
    结构的CD sampleCD = {.int_ID = 0,.dbl_ID = 0.0};
    INT blocklengths [2]; //这个描述如何相同的数据类型很多块将在新MPI_Datatype
    MPI_Aint偏移[2]; //这个存储的偏移量,以字节为单位(位),块从数据类型的'开始'
    MPI_Datatype block_types [2]; //这个店里面内置的数据类型的块由
    MPI_Datatype myMPI_CD; //只是新数据类型的名称
    MPI_Aint myStruct_address,int_ID_address,dbl_ID_address,int_offset,dbl_offset; //有用的占位符填充上述阵列
    // ===========================================================================================================================
#万一
    //初始化=================== MPI功能========================== ==
    MPI_INIT(安培; ARGC,&安培; argv的);
    MPI_Comm_size(MPI_COMM_WORLD,&安培; numprocs);
    MPI_Comm_rank(MPI_COMM_WORLD,&安培;身份识别码);
    // ================================================ ===============================
#如果FULL_PROGRAM
    // ==================这部分实际上正式定义的数据类型MPI ====================== =========================
    MPI_Get_address(安培; sampleCD,&安培; myStruct_address); //开始结构CD点
    MPI_Get_address(安培; sampleCD.int_ID,&安培; int_ID_address); // CD中的第一项的起点
    MPI_Get_address(安培; sampleCD.dbl_ID,&安培; dbl_ID_address); //在CD第二个输入的起点
    int_offset = int_ID_address - myStruct_address; //从第一个开始偏移启动光盘
    dbl_offset = dbl_ID_address - myStruct_address; //从第二个开始偏移启动光盘    blocklengths [0] = 1; blocklengths [1] = 1; //数组告诉它相同的数据类型有多少块,以及条目的每个块中的数
    //这说,有相同数据类型的两个块,并且两个块具有在其中只有一个变量    偏移[0] = int_offset;偏移[1] = dbl_offset; //第一块开始于int_offset,第二块开始于dbl_offset(从'myData_address'    block_types [0] = MPI_INT; block_types [1] = MPI_DOUBLE; //第一个块包含MPI_INT,第二个包含MPI_DOUBLE    MPI_Type_create_struct(2 blocklengths,偏移,block_types,&安培; myMPI_CD); //这个使用上述数组定义MPI_Datatype ...的MPI-2功能    MPI_Type_commit(安培; myMPI_CD); //这是界定/预订数据类型中的最后一步
    // ========================================================================================================================    mylen =本身份识别码* 2; //每个进程被告知它的阵列应该有多长......我用来定义随机但只是使事情混乱    p_lens =(INT *)释放calloc((为size_t)numprocs,sizeof的(INT)); //对于元件(p_lens)和偏移距离的recv缓冲器的起始数(d_disp)分配内存
    p_disp =(INT *)释放calloc((为size_t)numprocs,sizeof的(INT));    MYDATA的=(结构CD *)释放calloc((为size_t)mylen,sizeof的(结构CD)); //为每个进程的数组分配内存
    //如果mylen == 0,则返回的唯一指针堆    如果{MPI_Abort(MPI_COMM_WORLD,1)(p_lens!);出口(EXIT_FAILURE); }
    如果{MPI_Abort(MPI_COMM_WORLD,1)(p_disp!);出口(EXIT_FAILURE); }
    如果(myData的!){MPI_Abort(MPI_COMM_WORLD,1);出口(EXIT_FAILURE); }
    对于(双TEMP = 0.0;温度< 1e6个电子++ TEMP)温度+ = EXP(-10.0);
    MPI_Barrier(MPI_COMM_WORLD); //纯粹是为了保持举办的输出给一个时间延迟    对于(INT K = 0; K< numprocs ++ K){        如果(身份识别码== K){            //的printf(\\ t ID%d的%d个条目:{,身份识别码,mylen);            的for(int i = 0; I< mylen ++我){                myData的[I] =(结构光盘){.int_ID =本身份识别码*第(i + 1),.dbl_ID =本身份识别码*第(i + 1)}; //填充用简单的模式数据元素
                //的printf(%d个:(%D,%LG),我,myData的[I] .int_ID,myData的[I] .dbl_ID);
            }
            //的printf(} \\ n);
        }
    }    对于(双TEMP = 0.0;温度< 1e6个电子++ TEMP)温度+ = EXP(-10.0);
    MPI_Barrier(MPI_COMM_WORLD); //纯粹是为了保持举办的输出给一个时间延迟    MPI_Gather(安培; mylen,1,MPI_INT,p_lens,1,MPI_INT,0,MPI_COMM_WORLD); //每一个进程将根他们将发送向量的长度1#如果
    MPI_Type_size(myMPI_CD,&安培; MPI_CD_size); //获取MPI_Datatype为p_disp大小
#其他
    MPI_CD_size = sizeof的(结构CD); //使用这个不会改变的东西太多了...
#万一    对于(INT J = 0; J< numprocs ++ j)条{        total_len + = p_lens [J]。        如果(J == 0){p_disp [J] = 0; }
        其他{p_disp [J] = p_disp [J-1] + p_lens [J] * MPI_CD_size; }
    }    如果(身份识别码== 0){        ALLDATA =(结构CD *)释放calloc((为size_t)total_len,sizeof的(结构CD)); //分配数组
        如果(ALLDATA!){MPI_Abort(MPI_COMM_WORLD,1);出口(EXIT_FAILURE); }
    }    MPI_Gatherv(MYDATA的,mylen,myMPI_CD,ALLDATA,p_lens,p_disp,myMPI_CD,0,MPI_COMM_WORLD); //每个阵列发送根处理他们的阵列,其被存储在'ALLDATA'    // ==============================输出证实:通讯成功============ =============================
    如果(身份识别码== 0){        的for(int i = 0; I< numprocs ++我){
            的printf(从%d \\ n \\ tElements上MASTER是:{,我);
            对于(INT K = 0; K< p_lens [I]; ++ K){printf的(%d个:(%D,%LG),K,(ALLDATA + p_disp [I] + K) - GT; int_ID (ALLDATA + p_disp [I] + K) - GT; dbl_ID); }            如果(p_lens [I] == 0)printf的(无);
            的printf(} \\ n);
        }
        的printf(\\ n); //每个数据元素应该出现两个相同的号码,该进程ID递增计数
    }
    // ==========================================================================================================    如果(p_lens){免费(p_lens); p_lens = NULL; } //添加这并没有摆脱MPI_Finalize赛格过错
    如果(p_disp){免费(p_disp); p_disp = NULL; }
    如果(MYDATA的){免费(MYDATA的); myData的= NULL; }
    如果(ALLDATA){免费(ALLDATA); ALLDATA = NULL; } // if语句,确保不是这个指针分配内存的进程没有任何自由    对于(双TEMP = 0.0;温度< 1e6个电子++ TEMP)温度+ = EXP(-10.0);
    MPI_Barrier(MPI_COMM_WORLD); //纯粹是为了保持举办的输出给一个时间延迟
    的printf(ID%D:我已经走到了尽头...... MPI_Type_free前\\ n!,身份识别码);    // ====================== CLEAN UP ======================== ================================================== ======
    ERROR code = MPI_Type_free(安培; myMPI_CD); //这个释放的数据类型...不总是必要的,但一个好习惯    对于(双TEMP = 0.0;温度< 1e6个电子++ TEMP)温度+ = EXP(-10.0);
    MPI_Barrier(MPI_COMM_WORLD); //纯粹是为了保持举办的输出给一个时间延迟    如果(ERROR code = MPI_SUCCESS!){printf的(ID%d个... MPI_Type_free没有成功\\ n,身份识别码); MPI_Abort(MPI_COMM_WORLD,911);出口(EXIT_FAILURE); }
    其他{printf的(ID%d个... MPI_Type_free是成功的,在进入MPI_Finalize ... \\ N,身份识别码); }
#万一
    ERROR code = MPI_Finalize();    对于(双TEMP = 0.0;温度< 1E7 ++ TEMP)温度+ = EXP(-10.0); //没有MPI_Barrier后MPI_Finalize!    如果(ERROR code = MPI_SUCCESS!){printf的(ID%d个... MPI_Finalize没有成功\\ n,身份识别码); MPI_Abort(MPI_COMM_WORLD,911);出口(EXIT_FAILURE); }
    其他{printf的(ID%d个... MPI_Finalize成功\\ n,身份识别码); }    返回EXIT_SUCCESS;
}


解决方案

日k外环是假的,但不是技术上的错误的 - 它只是无用

真正的问题是,你要位移MPI_GATHERV是错误的。如果通过的valgrind运行,你会看到这样的事情:

  == == 28749大小为2写入无效
== == 28749在0x4A086F4:的memcpy(mc_replace_strmem.c:838)
== == 28749通过0x4C69614:unpack_ predefined_data(datatype_unpack.h:41)
== == 28749通过0x4C6B336:ompi_generic_simple_unpack(datatype_unpack.c:418)
== == 28749通过0x4C7288F:ompi_convertor_unpack(convertor.c:314)
== == 28749通过0x8B295C7:mca_pml_ob1_recv_frag_callback_match(pml_ob1_recvfrag.c:216)
== == 28749通过0x935723C:mca_btl_sm_component_progress(btl_sm_component.c:426)
== == 28749通过0x51D4F79:opal_progress(opal_progress.c:207)
== == 28749通过0x8B225CA:opal_condition_wait(condition.h:99)
== == 28749通过0x8B22718:ompi_request_wait_completion(request.h:375)
== == 28749通过0x8B231E1:mca_pml_ob1_recv(pml_ob1_irecv.c:104)
== == 28749通过0x955E7A7:mca_coll_basic_gatherv_intra(coll_basic_gatherv.c:85)
== == 28749通过0x9F7CBFA:mca_coll_sync_gatherv(coll_sync_gatherv.c:46)
== == 28749地址0x7b1d630不stack'd,malloc分配或(最近)free'd

这表明MPI_GATHERV在某种程度上给予不良信息。

(还有一些来自开放MPI内的libltdl其他Valgrind的警告,这是不幸的是不可避免的 - 它在的libltdl一个bug,另一个来自PLPA,这也是不幸的是不可避免的,因为它是有意这样做[理由是不有趣的在这里讨论])

在您的位移计算看,我看

  total_len + = p_lens [J]。    如果(J == 0){
        p_disp [J] = 0;
    }其他{
        p_disp [J] = p_disp [J - 1] + p_lens [J] * MPI_CD_size;
    }

但MPI聚集位移数据类型,而不是字节为单位。所以,它真的应该是:

  p_disp [J] = total_len;
total_len + = p_lens [J]。

此更改所做的MPI_GATHERV Valgrind的警告离开我。

I am writing a simple code to learn how to define an MPI_Datatype and use it in conjunction with MPI_Gatherv. I wanted to make sure I could combine variable length, dynamically allocated arrays of structured data on a process, which seems to be working fine, up until my call to MPI_Finalize(). I have confirmed that this is where the problem starts to manifest itself by using print statements and the Eclipse PTP debugger (backend is gdb-mi). My main question is, how can I get rid of the segmentation fault?

The segfault does not occur every time I run the code. For instance, it hasn't happened for 2 or 3 processes, but tends to happen regularly when I run with about 4 or more processes.

Also, when I run this code with valgrind, the segmentation fault does not occur. However, I do get error messages from valgrind, though the output is difficult for me to understand when I use MPI functions, even with a large number of targeted suppressions. I am also concerned that if I use more suppressions, I will silence a useful error message.

I compile the normal code using these flags, so I am using the C99 standard in both cases: -ansi -pedantic -Wall -O2 -march=barcelona -fomit-frame-pointer -std=c99and the debugged code with: -ansi -pedantic -std=c99 -Wall -g

Both use the gcc 4.4 mpicc compiler, and are run on a cluster using Red Hat Linux with Open MPI v1.4.5. Please let me know if I have left out other important bits of information. Here is the code, and thanks in advance:

//#include <unistd.h>
#include <string.h>
#include <stdio.h>
#include <math.h>
#include <stdlib.h>
//#include <limits.h>

#include "mpi.h"

#define FULL_PROGRAM        1

struct CD{

    int int_ID;
    double dbl_ID;
};

int main(int argc, char *argv[]) {

    int numprocs, myid, ERRORCODE;

#if FULL_PROGRAM
    struct CD *myData=NULL;             //Each process contributes an array of data, comprised of 'struct CD' elements
    struct CD *allData=NULL;            //root will dynamically allocate this array to store all the data from rest of the processes
    int *p_lens=NULL, *p_disp=NULL;     //p_lens stores the number of elements in each process' array, p_disp stores the displacements in bytes
    int MPI_CD_size;                    //stores the size of the MPI_Datatype that is defined to allow communication operations using 'struct CD' elements

    int mylen, total_len=0;             //mylen should be the length of each process' array
                                        //MAXlen is the maximum allowable array length
                                        //total_len will be the sum of mylen across all processes

    // ============ variables related to defining new MPI_Datatype at runtime ====================================================
    struct CD sampleCD = {.int_ID=0, .dbl_ID=0.0};
    int blocklengths[2];                //this describes how many blocks of identical data types will be in the new MPI_Datatype
    MPI_Aint offsets[2];                //this stores the offsets, in bytes(bits?), of the blocks from the 'start' of the datatype
    MPI_Datatype block_types[2];        //this stores which built-in data types the blocks are comprised of
    MPI_Datatype  myMPI_CD;             //just the name of the new datatype
    MPI_Aint myStruct_address, int_ID_address, dbl_ID_address, int_offset, dbl_offset;  //useful place holders for filling the arrays above
    // ===========================================================================================================================
#endif
    // =================== Initializing MPI functionality ============================
    MPI_Init(&argc, &argv);
    MPI_Comm_size(MPI_COMM_WORLD, &numprocs);
    MPI_Comm_rank(MPI_COMM_WORLD, &myid);
    // ===============================================================================
#if FULL_PROGRAM
    // ================== This part actually formally defines the MPI datatype ===============================================
    MPI_Get_address(&sampleCD, &myStruct_address);          //starting point of struct CD
    MPI_Get_address(&sampleCD.int_ID, &int_ID_address);     //starting point of first entry in CD
    MPI_Get_address(&sampleCD.dbl_ID, &dbl_ID_address);     //starting point of second entry in CD
    int_offset = int_ID_address - myStruct_address;         //offset from start of first to start of CD
    dbl_offset = dbl_ID_address - myStruct_address;         //offset from start of second to start of CD

    blocklengths[0]=1;  blocklengths[1]=1;                  //array telling it how many blocks of identical data types there are, and the number of entries in each block
    //This says there are two blocks of identical data-types, and both blocks have only one variable in them

    offsets[0]=int_offset;  offsets[1]=dbl_offset;          //the first block starts at int_offset, the second block starts at dbl_offset (from 'myData_address'

    block_types[0]=MPI_INT; block_types[1]=MPI_DOUBLE;      //the first block contains MPI_INT, the second contains MPI_DOUBLE

    MPI_Type_create_struct(2, blocklengths, offsets, block_types, &myMPI_CD);       //this uses the above arrays to define the MPI_Datatype...an MPI-2 function

    MPI_Type_commit(&myMPI_CD);     //this is the final step to defining/reserving the data type
    // ========================================================================================================================

    mylen   = myid*2;       //each process is told how long its array should be...I used to define that randomly but that just makes things messier

    p_lens  = (int*)        calloc((size_t)numprocs,    sizeof(int));       //allocate memory for the number of elements (p_lens) and offsets from the start of the recv buffer(d_disp)
    p_disp  = (int*)        calloc((size_t)numprocs,    sizeof(int));

    myData  = (struct CD*)  calloc((size_t)mylen,       sizeof(struct CD));         //allocate memory for each process' array
    //if mylen==0, 'a unique pointer to the heap is returned'

    if(!p_lens) {   MPI_Abort(MPI_COMM_WORLD, 1); exit(EXIT_FAILURE);   }
    if(!p_disp) {   MPI_Abort(MPI_COMM_WORLD, 1); exit(EXIT_FAILURE);   }
    if(!myData) {   MPI_Abort(MPI_COMM_WORLD, 1); exit(EXIT_FAILURE);   }


    for(double temp=0.0;temp<1e6;++temp) temp += exp(-10.0);
    MPI_Barrier(MPI_COMM_WORLD);                                //purely for keeping the output organized by give a delay in time

    for (int k=0; k<numprocs; ++k) {

        if(myid==k) {

            //printf("\t ID %d has %d entries: { ", myid, mylen);

            for(int i=0; i<mylen; ++i) {

                myData[i]= (struct CD) {.int_ID=myid*(i+1), .dbl_ID=myid*(i+1)};            //fills data elements with simple pattern
                //printf("%d: (%d,%lg) ", i, myData[i].int_ID, myData[i].dbl_ID);
            }
            //printf("}\n");
        }
    }

    for(double temp=0.0;temp<1e6;++temp) temp += exp(-10.0);
    MPI_Barrier(MPI_COMM_WORLD);                            //purely for keeping the output organized by give a delay in time

    MPI_Gather(&mylen,  1, MPI_INT, p_lens, 1, MPI_INT, 0, MPI_COMM_WORLD);     //Each process sends root the length of the vector they'll be sending

#if 1
    MPI_Type_size(myMPI_CD, &MPI_CD_size);          //gets the size of the MPI_Datatype for p_disp
#else
    MPI_CD_size = sizeof(struct CD);                //using this doesn't change things too much...
#endif

    for(int j=0;j<numprocs;++j) {

        total_len += p_lens[j];

        if (j==0)   {   p_disp[j] = 0;                                      }
        else        {   p_disp[j] = p_disp[j-1] + p_lens[j]*MPI_CD_size;    }
    }

    if (myid==0)    {

        allData = (struct CD*)  calloc((size_t)total_len,   sizeof(struct CD));     //allocate array
        if(!allData)    {   MPI_Abort(MPI_COMM_WORLD, 1); exit(EXIT_FAILURE);   }
    }

    MPI_Gatherv(myData, mylen, myMPI_CD, allData, p_lens, p_disp, myMPI_CD, 0, MPI_COMM_WORLD); //each array sends root process their array, which is stored in 'allData'

    // ============================== OUTPUT CONFIRMING THAT COMMUNICATIONS WERE SUCCESSFUL=========================================
    if(myid==0) {

        for(int i=0;i<numprocs;++i) {
            printf("\n\tElements from %d on MASTER are: { ",i);
            for(int k=0;k<p_lens[i];++k)    {   printf("%d: (%d,%lg) ", k, (allData+p_disp[i]+k)->int_ID, (allData+p_disp[i]+k)->dbl_ID);   }

            if(p_lens[i]==0) printf("NOTHING ");
            printf("}\n");
        }
        printf("\n");       //each data element should appear as two identical numbers, counting upward by the process ID
    }
    // ==========================================================================================================

    if (p_lens) {   free(p_lens);   p_lens=NULL;    }       //adding this in didn't get rid of the MPI_Finalize seg-fault
    if (p_disp) {   free(p_disp);   p_disp=NULL;    }
    if (myData) {   free(myData);   myData=NULL;    }
    if (allData){   free(allData);  allData=NULL;   }       //the if statement ensures that processes not allocating memory for this pointer don't free anything

    for(double temp=0.0;temp<1e6;++temp) temp += exp(-10.0);
    MPI_Barrier(MPI_COMM_WORLD);                            //purely for keeping the output organized by give a delay in time
    printf("ID %d: I have reached the end...before MPI_Type_free!\n", myid);

    // ====================== CLEAN UP ================================================================================
    ERRORCODE = MPI_Type_free(&myMPI_CD);           //this frees the data type...not always necessary, but a good practice

    for(double temp=0.0;temp<1e6;++temp) temp += exp(-10.0);
    MPI_Barrier(MPI_COMM_WORLD);                                //purely for keeping the output organized by give a delay in time

    if(ERRORCODE!=MPI_SUCCESS)  {   printf("ID %d...MPI_Type_free was not successful\n", myid); MPI_Abort(MPI_COMM_WORLD, 911); exit(EXIT_FAILURE); }
    else                        {   printf("ID %d...MPI_Type_free was successful, entering MPI_Finalize...\n", myid);       }
#endif
    ERRORCODE=MPI_Finalize();

    for(double temp=0.0;temp<1e7;++temp) temp += exp(-10.0);        //NO MPI_Barrier AFTER MPI_Finalize!

    if(ERRORCODE!=MPI_SUCCESS)  {   printf("ID %d...MPI_Finalize was not successful\n", myid);  MPI_Abort(MPI_COMM_WORLD, 911); exit(EXIT_FAILURE); }
    else                        {   printf("ID %d...MPI_Finalize was successful\n", myid);      }

    return EXIT_SUCCESS;
}
解决方案

The outer loop on k is bogus, but is not technically wrong -- it's just useless.

The real issue is that your displacements to MPI_GATHERV are wrong. If you run through valgrind, you'll see something like this:

==28749== Invalid write of size 2
==28749==    at 0x4A086F4: memcpy (mc_replace_strmem.c:838)
==28749==    by 0x4C69614: unpack_predefined_data (datatype_unpack.h:41)
==28749==    by 0x4C6B336: ompi_generic_simple_unpack (datatype_unpack.c:418)
==28749==    by 0x4C7288F: ompi_convertor_unpack (convertor.c:314)
==28749==    by 0x8B295C7: mca_pml_ob1_recv_frag_callback_match (pml_ob1_recvfrag.c:216)
==28749==    by 0x935723C: mca_btl_sm_component_progress (btl_sm_component.c:426)
==28749==    by 0x51D4F79: opal_progress (opal_progress.c:207)
==28749==    by 0x8B225CA: opal_condition_wait (condition.h:99)
==28749==    by 0x8B22718: ompi_request_wait_completion (request.h:375)
==28749==    by 0x8B231E1: mca_pml_ob1_recv (pml_ob1_irecv.c:104)
==28749==    by 0x955E7A7: mca_coll_basic_gatherv_intra (coll_basic_gatherv.c:85)
==28749==    by 0x9F7CBFA: mca_coll_sync_gatherv (coll_sync_gatherv.c:46)
==28749==  Address 0x7b1d630 is not stack'd, malloc'd or (recently) free'd

Indicating that MPI_GATHERV was given bad information somehow.

(there are other valgrind warnings that come from libltdl inside Open MPI which are unfortunately unavoidable -- it's a bug in libltdl, and another from PLPA, which is also unfortunately unavoidable because it's intentionally doing that [for reasons that aren't interesting to discuss here])

Looking at your displacements computation, I see

    total_len += p_lens[j];

    if (j == 0) {
        p_disp[j] = 0;
    } else {
        p_disp[j] = p_disp[j - 1] + p_lens[j] * MPI_CD_size;
    }

But MPI gather displacements are in units of datatypes, not bytes. So it really should be:

p_disp[j] = total_len;
total_len += p_lens[j];

Making this change made the MPI_GATHERV valgrind warning go away for me.

这篇关于C,开放MPI:从通话分割过错MPI_Finalize()。段错误并不总是发生,特别是随着工艺低的数字的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持!

08-01 00:21