问题描述
假设我有
import numpy as np
from scipy.interpolate import UnivariateSpline
# "true" data; I don't know this function
x = np.linspace(0, 100, 1000)
d = np.sin(x * 0.5) + 2 + np.cos(x * 0.1)
# sample data; that's what I actually measured
x_sample = x[::20]
d_sample = d[::20]
# fit spline
s = UnivariateSpline(x_sample, d_sample, k=3, s=0.005)
plt.plot(x, d)
plt.plot(x_sample, d_sample, 'o')
plt.plot(x, s(x))
plt.show()
我知道
我现在想拥有的是所有橙色点之间的功能,所以类似
What I would now like to have are functions between all the orange dots, so something like
knots = s.get_knots()
f0 = <some expression> for knots[0] <= x < knots[1]
f1 = <some expression> for knots[1] <= x < knots[2]
...
因此,选择fi
的方式应使其重现样条曲线拟合的形状.
Thereby, fi
should be chosen in a way that it reproduces the shape of the spline fit.
我在此处找到了帖子,但样条对于上面的示例,在那里产生的结果似乎是不正确的,并且它也不正是我所需要的,因为它不返回表达式.
I found the post here, but the spline produced there seems incorrect for the example above and it's also not exactly what I need as it does not return expressions.
如何将样条曲线变成分段函数?是否有(简单)方式来表达每个间隔,例如作为多项式?
How could I turn the spline into a piecewise function? Is there a (straightforward) way to express each interval e.g. as a polynomial?
推荐答案
简而言之,如果您对以标准幂为基础的多项式系数感兴趣,最好使用 CubicSpline
(请参见此讨论):
The short answer is, if you're interested in coefficients of a polynomial in standard power basis, you'd be better off using CubicSpline
(and see this discussion):
cu = scipy.interpolate.CubicSpline(x_sample, d_sample)
plt.plot(x_sample, y_sample, 'ko')
for i in range(len(cu.x)-1):
xs = np.linspace(cu.x[i], cu.x[i+1], 100)
plt.plot(xs, np.polyval(cu.c[:,i], xs - cu.x[i]))
要回答您的问题,您可以使用numpy.piecewise
在此处创建分段函数,在cu.x
中使用断点,在cu.c
中使用系数,然后直接自己编写多项式表达式或使用numpy.polyval
.例如,
And to answer your question, you could instead create a piecewise function from here using numpy.piecewise
, the breakpoints in cu.x
and the coefficients in cu.c
, and either directly code the polynomial expressions yourself or use numpy.polyval
. For example,
cu.c[:,0] # coeffs for 0th segment
# array([-0.01316353, -0.02680068, 0.51629024, 3. ])
# equivalent ways to code polynomial for this segment
f0 = lambda x: cu.c[0,0]*(x-x[0])**3 + cu.c[1,0]*(x-x[0])**2 + cu.c[2,0]*(x-x[0]) + cu.c[3,0]
f0 = lambda x: [cu.c[i,0]*(x-x[0])**(3-i) for i in range(4)]
# ... or getting values directly from x's
y0 = np.polyval(cu.c[:,0], xs - cu.x[0])
更长的答案:
这里有一些潜在的困惑点:
There are a few points of potential confusion here:
-
UnivariateSpline
符合 B样条曲线,因此系数不是与标准多项式幂基础相同 - 为了从B样条曲线进行转换,我们可以使用
PPoly.from_spline
,但是不幸的是,UnivariateSpline
返回的截断的列表不能使用此功能.我们可以通过访问样条线对象的内部数据来解决此问题,这是一个禁忌. - 此外,系数矩阵
c
(无论来自UnivariateSpline
还是CubicSpline
)的阶次相反,并且假设您自己处于居中"状态,例如c[k,i]
处的系数属于c[k,i]*(x-x[i])^(3-k)
.
UnivariateSpline
fits a B-spline basis, so the coefficients are not the same as a standard polynomial power basis- In order to convert from B-spline, we can use
PPoly.from_spline
, but unfortunatelyUnivariateSpline
returns a truncated list of knots and coefficients that won't play with this function. We can resolve this problem by accessing the internal data of the spline object, which is a little taboo. - Also, the coefficient matrix
c
(whether fromUnivariateSpline
orCubicSpline
) is in reverse degree order and assumes you are "centering" yourself, e.g. the coefficient atc[k,i]
belongs toc[k,i]*(x-x[i])^(3-k)
.
根据您的设置,请注意,如果我们不使用UnivariateSpline包装器而直接使用splrep
且不进行平滑处理(s=0
),则可以获取tck
(结系数系数度)元组并发送将其添加到PPoly.from_spline
函数并获取所需的系数:
Given your setup, note that if instead of using the UnivariateSpline wrapper, we directly fit with splrep
and no smoothing (s=0
), we can grab the tck
(knots-coefficients-degree) tuple and send it to the PPoly.from_spline
function and get the coefficients we want:
tck = scipy.interpolate.splrep(x_sample, d_sample, s=0)
tck
# (array([0. , 0. , 0. , 0. , 2.68456376,
# 4.02684564, 5.36912752, 6.7114094 , 9.39597315, 9.39597315,
# 9.39597315, 9.39597315]),
# array([3. , 3.46200469, 4.05843704, 3.89649312, 3.33792889,
# 2.29435138, 1.65015175, 1.59021688, 0. , 0. ,
# 0. , 0. ]),
# 3)
p = scipy.interpolate.PPoly.from_spline(tck)
p.x.shape # breakpoints in unexpected shape
# (12,)
p.c.shape # polynomial coeffs in unexpected shape
# (4, 11)
请注意在tck
中和在p.x
中又一次重复的怪异断点:这是FITPACK(运行所有这些的算法).
Notice the weird repeated breakpoints in tck
and again in p.x
: this is a FITPACK thing (the algorithm running all this).
如果我们尝试从UnivariateSpline发送带有(s.get_knots(), s.get_coeffs(), 3)
的tck
元组,则会丢失这些重复,因此from_spline
不起作用.查看来源尽管看起来完整的向量都存储在self._data
中,所以我们可以做到
If we try to send a tck
tuple from UnivariateSpline with (s.get_knots(), s.get_coeffs(), 3)
, we are missing those repeats, so from_spline
doesn't work. Checking out the source though it appears the full vector is stored in self._data
, so we can do
s = scipy.interpolate.UnivariateSpline(x_sample, d_sample, s=0)
tck = (s._data[8], s._data[9], 3)
p = scipy.interpolate.PPoly.from_spline(tck)
,并获得与以前相同的结果.要检查这些系数是否起作用:
and get the same as before. To check these coefficients work:
plt.plot(x_sample, d_sample, 'o')
for i in range(len(p.x)-1):
xs = np.linspace(p.x[i], p.x[i+1], 10)
plt.plot(xs, np.polyval(p.c[:,i], xs - p.x[i]))
请注意 numpy.polyval
希望coeffs的顺序相反,因此我们可以照原样通过p.c
.
这篇关于如何将样条曲线拟合转换为分段函数?的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持!