本文介绍了使用其他系列过滤 pandas 数据框的处理方法,对大家解决问题具有一定的参考价值,需要的朋友们下面随着小编来一起学习吧!
问题描述
我有Pandas系列,我们将其称为roved_fields,我想使用它通过以下方式过滤df:
I have Pandas Series we'll call approved_fields which I'd like to use to filter a df by:
approved_field(['Field1','Field2','Field3')]
df
Field
0 Field1
1 Field4
2 Field2
3 Field5
4 Field2
应用核准的字段过滤器后,生成的df应如下所示:
After applying the approved_field filter, the resulting df should look like:
Field
0 Field1
1 Field2
2 Field2
谢谢!
推荐答案
您可以使用isin
和布尔索引:
You can use isin
and boolean indexing:
>>> import pandas as pd
>>> df = pd.DataFrame({"Field": "Field1 Field4 Field2 Field5 Field2".split()})
>>> approved_fields = "Field1", "Field2", "Field3"
>>> df['Field'].isin(approved_fields)
0 True
1 False
2 True
3 False
4 True
Name: Field, dtype: bool
>>> df[df['Field'].isin(approved_fields)]
Field
0 Field1
2 Field2
4 Field2
这篇关于使用其他系列过滤 pandas 数据框的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持!