本文介绍了可视化运动z = z(t,x,y)的处理方法,对大家解决问题具有一定的参考价值,需要的朋友们下面随着小编来一起学习吧!

问题描述

我需要解决衍生物并将其可视化。



dx / dt = -y - z,

dy / dt = x + ay,

dz / dt = b + z(x - c)

常用参数:a = b = 0.2,c = 5.7

可视化z = z(t,x,y) 。



我尝试了什么:



我很困惑我需要使用Runge-Kutta方法来解决然后编码或者是否有任何其他简单方法来解决方程式。

I need to solve the derivatives and visualize them.

dx/dt = -y - z,
dy/dt = x + ay,
dz/dt = b + z(x - c)
Usual parameters: a = b = 0.2, c = 5.7
Visualize z=z(t,x,y).

What I have tried:

I am confused do i need to use Runge-Kutta method to solve and then code or is there any other easy method to solve the equations.

推荐答案

引用:

我很困惑我是否需要使用Runge-Kutta方法来解决然后编码或者是否有任何其他简单的方法来解决方程式

I am confused do i need to use Runge-Kutta method to solve and then code or is there any other easy method to solve the equations

然后看看这个维基百科页面: []。

Then have a look at this very Wikipedia page: Numerical methods for ordinary differential equations - Wikipedia[^].


这篇关于可视化运动z = z(t,x,y)的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持!

08-24 03:53