问题描述
我一直在研究sympy和scipy,但是找不到或找出如何求解耦合微分方程组(非线性,一阶)的方法.
I've been working with sympy and scipy, but can't find or figure out how to solve a system of coupled differential equations (non-linear, first-order).
那么有什么办法可以解决耦合微分方程?
So is there any way to solve coupled differential equations?
等式的形式为:
V11'(s) = -12*v12(s)**2
v22'(s) = 12*v12(s)**2
v12'(s) = 6*v11(s)*v12(s) - 6*v12(s)*v22(s) - 36*v12(s)
具有v11(s),v22(s),v12(s)的初始条件.
with initial conditions for v11(s), v22(s), v12(s).
推荐答案
有关具有scipy的ODE的数值解,请参见 scipy.integrate.solve_ivp
, scipy.integrate.odeint
或 scipy.integrate.ode .
For the numerical solution of ODEs with scipy, see scipy.integrate.solve_ivp
, scipy.integrate.odeint
or scipy.integrate.ode.
SciPy Cookbook 中提供了一些示例(向下滚动至常微分方程"部分).
Some examples are given in the SciPy Cookbook (scroll down to the section on "Ordinary Differential Equations").
这篇关于有什么方法可以解决python中的耦合微分方程组吗?的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持!