本文介绍了倾斜的正态分布的处理方法,对大家解决问题具有一定的参考价值,需要的朋友们下面随着小编来一起学习吧!
问题描述
有人知道如何用scipy绘制偏态正态分布吗?
我认为可以使用stats.norm类,但我不知道如何使用。
此外,我如何估算描述一维数据集的偏态正态分布的参数?
Does anyone know how to plot a skew normal distribution with scipy?I supose that stats.norm class can be used but I just can't figure out how.Furthermore, how can I estimate the parameters describing the skew normal distribution of a unidimensional dataset?
推荐答案
来自维基百科,
from scipy import linspace
from scipy import pi,sqrt,exp
from scipy.special import erf
from pylab import plot,show
def pdf(x):
return 1/sqrt(2*pi) * exp(-x**2/2)
def cdf(x):
return (1 + erf(x/sqrt(2))) / 2
def skew(x,e=0,w=1,a=0):
t = (x-e) / w
return 2 / w * pdf(t) * cdf(a*t)
# You can of course use the scipy.stats.norm versions
# return 2 * norm.pdf(t) * norm.cdf(a*t)
n = 2**10
e = 1.0 # location
w = 2.0 # scale
x = linspace(-10,10,n)
for a in range(-3,4):
p = skew(x,e,w,a)
plot(x,p)
show()
如果要从数据集中查找比例,位置和形状参数,请使用 scipy.optimize.leastsq
,例如使用 e = 1.0
, w = 2.0
和 a = 1.0
,
If you want to find the scale, location, and shape parameters from a dataset use scipy.optimize.leastsq
, for example using e=1.0
,w=2.0
and a=1.0
,
fzz = skew(x,e,w,a) + norm.rvs(0,0.04,size=n) # fuzzy data
def optm(l,x):
return skew(x,l[0],l[1],l[2]) - fzz
print leastsq(optm,[0.5,0.5,0.5],(x,))
应该给你类似的东西,
(array([ 1.05206154, 1.96929465, 0.94590444]), 1)
这篇关于倾斜的正态分布的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持!