本文介绍了为什么collections.Counter将numpy.nan视为相等?的处理方法,对大家解决问题具有一定的参考价值,需要的朋友们下面随着小编来一起学习吧!
问题描述
我对以下行为感到惊讶:
I am surprised by the following behavior:
>>> import numpy as np
>>> from collections import Counter
>>> my_list = [1,2,2, np.nan, np.nan]
>>> Counter(my_list)
Counter({nan: 2, 2: 2, 1: 1}) # Counter treats np.nan as equal and
# tells me that I have two of them
>>> np.nan == np.nan # However, np.nan's are not equal
False
这是怎么回事?
当我使用float('nan')
而不是np.nan
时,我得到了预期的行为:
When I use float('nan')
instead of np.nan
, I get the behavior I expect:
>>> my_list = [1,2,2, float('nan'), float('nan')]
>>> Counter(my_list)
Counter({2: 2, nan: 1, 1: 1, nan: 1}) # two different nan's
>>> float('nan') == float('nan')
False
我正在使用python 2.7.3
和numpy 1.8.1
.
如果我这样做:
>>> a = 300
>>> b = 300
>>> a is b
False
>>> Counter([a, b])
Counter({300: 2})
因此,Counter
或任何python dict
会在以下情况下将两个对象X
和Y
视为不相同:
So, Counter
or any python dict
considers two objects X
and Y
not the same if:
X == Y -> False
and
X is Y -> False
正确吗?
推荐答案
这与numpy.nan
与float("nan")
无关,因为您有两个单独的float nan.
This isn't about numpy.nan
vs. float("nan")
, it's that you've got two separate float nans.
>>> np.nan is np.nan
True
>>> float("nan") is float("nan")
False
等等
>>> Counter([1,2,2, np.nan, np.nan])
Counter({nan: 2, 2: 2, 1: 1})
>>> Counter([1,2,2, float("nan"), float("nan")])
Counter({2: 2, nan: 1, 1: 1, nan: 1})
但是
>>> f = float("nan")
>>> Counter([1,2,2, f, f])
Counter({nan: 2, 2: 2, 1: 1})
这篇关于为什么collections.Counter将numpy.nan视为相等?的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持!