本文介绍了Pandas,来自 2 列的数据透视表,其值为其中一列的计数的处理方法,对大家解决问题具有一定的参考价值,需要的朋友们下面随着小编来一起学习吧!
问题描述
我有一个熊猫数据框:
+---------------+-------------+
| Test_Category | Test_Result |
+---------------+-------------+
| Cat_1 | Pass |
| Cat_1 | N/A |
| Cat_2 | Fail |
| Cat_2 | Fail |
| Cat_3 | Pass |
| Cat_3 | Pass |
| Cat_3 | Fail |
| Cat_3 | N/A |
+---------------+-------------+
我需要这样的表:
+------+------+------+-----+
| | Pass | Fail | N/A |
+------+------+------+-----+
| Cat1 | 1 | | 1 |
| Cat2 | | 2 | |
| Cat3 | 2 | 1 | 1 |
+------+------+------+-----+
我尝试使用 Pivot,但不知道如何让它计算 Test_Result 列中的出现次数并将它们作为值放入数据透视结果中.
I tried using a Pivot, but can't figure out how to make it count occurrences from Test_Result column and put them as values into pivot result.
谢谢!
推荐答案
这里是问题 NaN
值被排除,所以必须使用 fillna
与 crosstab
:
Here is problem NaN
values are exluded, so necessary use fillna
with crosstab
:
df1 = pd.crosstab(df['Test_Category'], df['Test_Result'].fillna('n/a'))
print (df1)
Test_Result Fail Pass n/a
Test_Category
Cat_1 0 1 1
Cat_2 2 0 0
Cat_3 1 2 1
或使用 GroupBy.size
与 unstack
用于重塑:
Or use GroupBy.size
with unstack
for reshape:
df['Test_Result'] = df['Test_Result'].fillna('n/a')
df1 = df.groupby(['Test_Category','Test_Result']).size().unstack()
print (df1)
Test_Result Fail Pass n/a
Test_Category
Cat_1 NaN 1.0 1.0
Cat_2 2.0 NaN NaN
Cat_3 1.0 2.0 1.0
df1 = df.groupby(['Test_Category','Test_Result']).size().unstack(fill_value=0)
print (df1)
Test_Result Fail Pass n/a
Test_Category
Cat_1 0 1 1
Cat_2 2 0 0
Cat_3 1 2 1
另一种解决方案 pivot_table
:
Another solution with pivot_table
:
df = df.pivot_table(index='Test_Category',columns='Test_Result', aggfunc='size')
这篇关于Pandas,来自 2 列的数据透视表,其值为其中一列的计数的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持!