问题描述
我想实现在CUDA多precision倍增。对于这样做,我已经实现,应计算 uint32_t的
的乘法256位操作数类型,并把结果在288位阵列的内核。到目前为止,我已经想出了这个code:
I am trying to implement multi-precision multiplication in CUDA. For doing that, I have implemented a kernel which should compute multiplication of uint32_t
type operand with 256-bit operand and put the result in 288-bit array. So far, I have came up with this code:
__device__ __constant__ UN_256fe B_const;
__global__ void multiply32x256Kernel(uint32_t A, UN_288bite* result){
uint8_t tid = blockIdx.x * blockDim.x + threadIdx.x;
//for managing warps
//uint8_t laineid = tid % 32;
//allocate partial products into array of uint64_t
__shared__ uint64_t partialMuls[8];
uint32_t carry, r;
if((tid < 8) && (tid != 0)){
//compute partial products
partialMuls[tid] = A * B_const.uint32[tid];
//add partial products and propagate carry
result->uint32[8] = (uint32_t)partialMuls[7];
r = (partialMuls[tid] >> 32) + ((uint32_t)partialMuls[tid - 1]);
carry = r < (partialMuls[tid] >> 32);
result->uint32[0] = (partialMuls[0] >> 32);
while(__any(carry)){
r = r + carry;
//new carry?
carry = r < carry;
}
result->uint32[tid] = r;
}
和我的数据类型是:
typedef struct UN_256fe{
uint32_t uint32[8];
}UN_256fe;
typedef struct UN_288bite{
uint32_t uint32[9];
}UN_288bite;
我的内核工作,但它给了我错误的结果。我不能在内核中进行调试,所以我会AP preciate如果有人让我知道问题出在哪里或如何调试我的code中的内核中的的Tegra-的Ubuntu
与 CUDA-6.0
。
谢谢
推荐答案
这答案有没有关系CUDA本身,而是一般的C实现。
This answer has nothing to do with CUDA itself, but is a general C implementation.
我不能完全跟着你在做什么(尤其是执行
),但你可以根据自己的大NUM功能试试这个片段。我定义的 DTYPE
,使其更容易与较小的领域进行测试。请注意,我没有具体使用执行
,但发扬部分产品。
I can't quite follow what you are doing (especially with carry
) but you could try this snippet based on my own big num functions. I defined dtype
to make it easier to test with smaller fields. Note that I don't specifically use a carry
, but carry forward the partial product.
// little-endian
#include <stdio.h>
#include <stdint.h>
#include <limits.h>
#define dtype uint8_t // for testing
//#define dtype uint32_t // for proper ver
#define SHIFTS (sizeof(dtype)*CHAR_BIT)
#define NIBBLES (SHIFTS/4)
#define ARRLEN 8
typedef struct UN_256fe {
dtype uint[ARRLEN];
} UN_256fe;
typedef struct UN_288bite {
dtype uint[ARRLEN+1];
} UN_288bite;
void multiply(UN_288bite *product, UN_256fe *operand, dtype multiplier)
{
int i;
uint64_t partial = 0;
for (i=0; i<ARRLEN; i++) {
partial = partial + (uint64_t)multiplier * operand->uint[i];
product->uint[i] = (dtype)partial;
partial >>= SHIFTS; // carry
}
product->uint[i] = (dtype)partial;
}
int main(void)
{
int i;
dtype multiplier = 0xAA;
UN_256fe operand = { 1, 2, 3, 4, 5, 6, 7, 8};
UN_288bite product;
multiply(&product, &operand, multiplier);
for(i=ARRLEN-1; i>=0; i--)
printf("%0*X", NIBBLES, operand.uint[i]);
printf("\n * %0*X = \n", NIBBLES, multiplier);
for(i=ARRLEN; i>=0; i--)
printf("%0*X", NIBBLES, product.uint[i]);
printf("\n");
return 0;
}
节目输出为 uint8_t有
0807060504030201
* AA =
0554A9FF54A9FF54AA
这篇关于在CUDA多precision乘法的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持!