问题描述
根据这个问题,我将代码修改为:
Following this question, I modified my code to:
model test
// types
type Mass = Real(unit = "Kg", min = 0);
type Length = Real(unit = "m");
type Area = Real(unit = "m2", min = 0);
type Force = Real(unit = "Kg.m/s2");
type Pressure = Real(unit = "Kg/m/s2");
type Torque = Real(unit = "Kg.m2/s2");
type Velocity = Real(unit = "m/s");
type Time = Real(unit = "s");
// constants
constant Real pi = 2 * Modelica.Math.asin(1.0);
parameter Mass Mp = 0.01;
parameter Length r1 = 0.010;
parameter Length r3 = 0.004;
parameter Integer n = 3;
parameter Area A = 0.020 * 0.015;
parameter Time Stepping = 1.0;
parameter Real DutyCycle = 1.0;
parameter Pressure Pin = 500000;
parameter Real Js = 1;
//parameter Real Muk = 0.0;
parameter Real Muk = 0.158;
// variables
Length x[n];
Velocity vx[n];
Real theta;
Real vt;
Pressure P[n];
Force Fnsp[n];
Torque Tfsc;
initial equation
theta = 0;
vt = 0;
algorithm
for i in 1:n loop
if noEvent((i - 1) * Stepping < mod(time, n * Stepping)) and noEvent(mod(time, n * Stepping) < Stepping * ((i - 1) + DutyCycle)) then
P[i] := Pin;
else
P[i] := 0;
end if;
end for;
Tfsc := -r3 * Muk * sign(vt) * abs(sum(Fnsp));
equation
vx = der(x);
vt = der(theta);
x = r1 * {sin(theta + (i - 1) * 2 * pi / n) for i in 1:n};
Mp * der(vx) + P * A = Fnsp;
Js * der(theta) = Tfsc - r1 * Fnsp * {cos(theta + (i - 1) * 2 * pi / n) for i in 1:n};
// Js * der(theta) = - r1 * Fnsp * {cos(theta + (i - 1) * 2 * pi / n) for i in 1:n};
annotation(
experiment(StartTime = 0, StopTime = 30, Tolerance = 1e-06, Interval = 0.03),
__OpenModelica_simulationFlags(lv = "LOG_STATS", outputFormat = "mat", s = "dassl"));
end test;
但是,我收到了
[1] .... 翻译警告
撕裂非线性方程组中具有默认零起始属性的迭代变量:
Iteration variables with default zero start attribute in torn nonlinear equation system:
Fnsp[3]:VARIABLE(unit = "Kg.m/s2" ) type: Real [3]
Fnsp[2]:VARIABLE(unit = "Kg.m/s2" ) type: Real [3]
Fnsp[1]:VARIABLE(unit = "Kg.m/s2" ) type: Real [3]
$DER.vt:VARIABLE() type: Real
这没有意义,但我认为我可以放心地忽略以下编译错误:
which doesn't make sense but I assume I can safely ignore, and the compiling error of:
矩阵单数!
欠定线性系统不可解
之前也曾报道过此处.如果我删除线条
which had also been previously reported here. if I remove the lines
Torque Tfsc;
和
Tfsc := -r3 * Muk * sign(vt) * abs(sum(Fnsp));
和改变
Js * der(theta) = - r1 * Fnsp * {cos(theta + (i - 1) * 2 * pi / n) for i in 1:n};
工作得很好.但是,将 Muk
设置为零,理论上相同的事情会导致与上述相同的错误!如果您能帮助我了解问题所在以及如何解决,我将不胜感激.
works perfectly fine. However, setting Muk
to zero, which theoretically the same thing leads to the same error as above! I would appreciate if you could help me know what is the problem and how I can resolve it.
P.S.1. 在 Dymola 的演示版上,模拟测试完成时没有错误,只有警告:
P.S.1. On the demo version of Dymola the simulation test finishes with no errors, only the warning:
Some variables are iteration variables of the initialization problem:
but they are not given any explicit start values. Zero will be used.
Iteration variables:
der(theta, 2)
P[1]
P[2]
P[3]
P.S.2. 使用 JModelica,删除 noEvent
并使用 python 代码:
P.S.2. Using JModelica, removing the noEvent
and using the python code:
model_name = 'test'
mo_file = 'test.mo'
from pymodelica import compile_fmu
from pyfmi import load_fmu
my_fmu = compile_fmu(model_name, mo_file)
myModel = load_fmu('test.fmu')
res = myModel.simulate(final_time=30)
theta = res['theta']
t = res['time']
import matplotlib.pyplot as plt
plt.plot(t, theta)
plt.show()
它以极快的速度为 Muk
的小值(例如 0.1
)求解模型.但它再次陷入更大的价值.唯一的警告是:
it solves the model blazingly fast for small values (e.g. 0.1
) of Muk
. But again it gets stuck for bigger values. The only warnings are:
Warning at line 30, column 3, in file 'test.mo':
Iteration variable "Fnsp[2]" is missing start value!
Warning at line 30, column 3, in file 'test.mo':
Iteration variable "Fnsp[3]" is missing start value!
Warning in flattened model:
Iteration variable "der(_der_theta)" is missing start value!
推荐答案
此外,由 if 方程触发的事件似乎可以完全替换为 Sample
运算符.你可能想看看那个.
Also it seems like your event triggered by your if-equation could be cleanly replaced by a Sample
operator. You might want to have a look at that.
这篇关于确定线性系统下的矩阵奇异不可解的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持!