本文介绍了从数据框中查找列的唯一组合的处理方法,对大家解决问题具有一定的参考价值,需要的朋友们下面随着小编来一起学习吧!
问题描述
在下面的数据集中,我需要找到唯一的序列并为其指定一个序列号.
In my below data set, I need to find unique sequences and assign them a serial no ..
数据集:
user age maritalstatus product
A Young married 111
B young married 222
C young Single 111
D old single 222
E old married 111
F teen married 222
G teen married 555
H adult single 444
I adult single 333
预期输出:
young married 0
young single 1
old single 2
old married 3
teen married 4
adult single 5
找到上面显示的唯一值后,如果我通过下面的新用户,
After finding the unique values like shown above, if I pass a new user like below,
user age maritalstatus
X young married
它应该将我的产品作为清单退还给我.
it should return me the products as a list .
X : [111, 222]
如果没有序列,如下所示
if there is no sequence, like below
user age maritalstatus
Y adult married
它应该给我返回一个空列表
it should return me an empty list
Y : []
推荐答案
首先仅选择要输出的列,然后添加 drop_duplicates
,最后在range
之前添加新列:
First select only columns for output and add drop_duplicates
, last add new column by range
:
df = df[['age','maritalstatus']].drop_duplicates()
df['no'] = range(len(df.index))
print (df)
age maritalstatus no
0 Young married 0
1 young married 1
2 young Single 2
3 old single 3
4 old married 4
5 teen married 5
7 adult single 6
如果要先将所有值都转换为小写:
If want convert all values to lowercase first:
df = df[['age','maritalstatus']].apply(lambda x: x.str.lower()).drop_duplicates()
df['no'] = range(len(df.index))
print (df)
age maritalstatus no
0 young married 0
2 young single 1
3 old single 2
4 old married 3
5 teen married 4
7 adult single 5
首先转换为lowercase
:
df[['age','maritalstatus']] = df[['age','maritalstatus']].apply(lambda x: x.str.lower())
print (df)
user age maritalstatus product
0 A young married 111
1 B young married 222
2 C young single 111
3 D old single 222
4 E old married 111
5 F teen married 222
6 G teen married 555
7 H adult single 444
8 I adult single 333
然后使用 merge
转换为list
的唯一product
:
df2 = pd.DataFrame([{'user':'X', 'age':'young', 'maritalstatus':'married'}])
print (df2)
age maritalstatus user
0 young married X
a = pd.merge(df, df2, on=['age','maritalstatus'])['product'].unique().tolist()
print (a)
[111, 222]
df2 = pd.DataFrame([{'user':'X', 'age':'adult', 'maritalstatus':'married'}])
print (df2)
age maritalstatus user
0 adult married X
a = pd.merge(df, df2, on=['age','maritalstatus'])['product'].unique().tolist()
print (a)
[]
但是,如果需要,请使用> c6> :
But if need column use transform
:
df['prod'] = df.groupby(['age', 'maritalstatus'])['product'].transform('unique')
print (df)
user age maritalstatus product prod
0 A young married 111 [111, 222]
1 B young married 222 [111, 222]
2 C young single 111 [111]
3 D old single 222 [222]
4 E old married 111 [111]
5 F teen married 222 [222, 555]
6 G teen married 555 [222, 555]
7 H adult single 444 [444, 333]
8 I adult single 333 [444, 333]
a = (pd.merge(df, df2, on=['age','maritalstatus'])
.groupby('user_y')['product']
.apply(lambda x: x.unique().tolist())
.to_dict())
print (a)
{'X': [111, 222]}
详细信息:
print (pd.merge(df, df2, on=['age','maritalstatus']))
user_x age maritalstatus product user_y
0 A young married 111 X
1 B young married 222 X
这篇关于从数据框中查找列的唯一组合的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持!