问题描述
我无法对数据进行弗里德曼测试。
我正在尝试使用以下命令运行弗里德曼测试:
I'm having trouble running a Friedman test over my data.I'm trying to run a Friedman test using this command:
friedman.test(mean ~ isi | expId, data=monoSum)
在以下数据库上():
> monoSum
expId isi N mean
1 m80B1 1 10 100.000000
2 m80B1 2 10 73.999819
3 m80B1 3 10 45.219362
4 m80B1 4 10 116.566174
. . . . .
18 m80L2 2 10 82.945491
19 m80L2 3 10 57.675480
20 m80L2 4 10 207.169277
. . . . . .
25 m80M2 1 10 100.000000
26 m80M2 2 10 49.752687
27 m80M2 3 10 19.042592
28 m80M2 4 10 150.411035
它给了我错误:
Error in friedman.test.default(c(100, 73.9998193095267, 45.2193621626293, :
not an unreplicated complete block design
我认为它给出了错误,因为当 monoSum $ isi == 1
时,均值始终为100。这是正确的吗?
I figure it gives the error because, when monoSum$isi==1
the value of mean is always 100. Is this correct?
但是, monoSum $ isi == 1
始终为100,因为它是所有其他 monoSum $的对照组isi
组已归一化,我不能假设正态分布,因此我无法运行rmANOVA…
是否有办法对此数据进行Friedman测试,或者我错过了一个非常重要的步骤
However, monoSum$isi==1
is alway 100 because it is the control group on which all the other monoSum$isi
groups are normalized. I can not assume a normal distribution, so I cannot run a rmANOVA…Is there a way to run a friedman test on this data or am I missing a very essential point here?
在此先谢谢!
推荐答案
如果我运行您的数据集,不会收到错误:
I don't get an error if I run your dataset:
Friedman rank sum test
data: mean and isi and expId
Friedman chi-squared = 17.9143, df = 3, p-value = 0.0004581
但是,您必须确保 expId
和 isi
被编码为因素。运行以下命令:
However, you have to make sure that expId
and isi
are coded as factors. Run these commands:
monoSum$expID$<-factor(monoSum$expID)
monoSum$isi$<-factor(monoSum$isi)
然后再次运行测试。这对我也有类似的问题。
Then run the test again. This has worked for me with a similar problem.
这篇关于Friedman测试未复制的完整模块设计错误的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持!