问题描述
新手在这里.刚刚从JS切换到Python以构建神经网络,但从中获得[Nan]输出.
newbie here. Just switched over from JS to Python to build Neural nets but getting [Nan] outputs from it.
奇怪的是我的乙状结肠功能.似乎没有遇到任何溢出,但导数导致混乱.
The weird thing is that my sigmoid func. doesn't seem to encounter any overflow but the derivative causes chaos.
import numpy as np
def sigmoid(x):
return x*(1-x)
return 1/(1 + np.exp(-x))
#The function- 2
def Sigmoid_Derivative(x):
return x * (1-x)
Training_inputs = np.array([[0,0,1],
[1,1,1],
[1,0,1],
[0,1,1]])
Training_outputs = np.array([[0, 1, 1, 0]]).T
np.random.seed(1)
synaptic_weights = np.random.random((3, 1)) - 1
print ("Random starting synaptic weight:")
print (synaptic_weights)
for iteration in range(20000):
Input_Layer = Training_inputs
Outputs = sigmoid(np.dot(Input_Layer, synaptic_weights))
erorr = Training_outputs - Outputs
adjustments = erorr * Sigmoid_Derivative(Outputs)
synaptic_weights += np.dot(Input_Layer.T, adjustments)
# The print declaration----------
print ("Synaptic weights after trainig:")
print (synaptic_weights)
print ("Outputs after training: ")
print (Outputs)
这是erorr消息.我不知道为什么它会溢出,因为权重似乎足够小.BTW Pls在我是新手的情况下以简单的python提供了解决方案:-
This is the erorr message. I dunno why it Overflowing because the weights seem to be small enough.BTW Pls give solutions in simple python as I am a newbie :--
Random starting synaptic weight:
[[-0.582978 ]
[-0.27967551]
[-0.99988563]]
/home/neel/Documents/VS-Code_Projects/Machine_Lrn(PY)/tempCodeRunnerFile.py:10: RuntimeWarning: overflow encountered in multiply
return x * (1-x)
Synaptic weights after trainig:
[[nan]
[nan]
[nan]]
Outputs after training:
[[nan]
[nan]
[nan]
[nan]]
推荐答案
您的代码至少存在两个问题.
There are at least two issues with your code.
第一个是在sigmoid
函数中莫名其妙地使用了2个return
语句,它们应该简单地是:
The first is the inexplicable use of 2 return
statements in your sigmoid
function, which should simply be:
def sigmoid(x):
return 1/(1 + np.exp(-x))
给出x=0
(0.5)的正确结果,而对于大x
则为1:
which gives the correct result for x=0
(0.5), and goes to 1 for large x
:
sigmoid(0)
# 0.5
sigmoid(20)
# 0.99999999793884631
您的(错误的)乙状结肠:
Your (wrong) sigmoid:
def your_sigmoid(x):
return x*(1-x)
return 1/(1 + np.exp(-x))
很容易导致溢出:
your_sigmoid(20)
# -380
另一个问题是您的派生词是错误的;应该是:
The other issue is that your derivative is wrong; it should be:
def Sigmoid_Derivative(x):
return sigmoid(x) * (1-sigmoid(x))
请参见 Sigmoid函数的导数线程此处.
这篇关于Python神经网络中不需要的[Nan]输出的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持!