问题描述
在类别理论8.2 的末尾,巴托斯·米列夫斯基(Bartosz Milewski)显示了一些示例逻辑,范畴论和类型系统之间的对应关系.
At the end of Category Theory 8.2, Bartosz Milewski shows some examples of the correspondence between logic, category theory, and type systems.
我在徘徊与逻辑异或运算符相对应的内容.我知道
I was wandering what corresponds to the logical xor operator. I know that
a xor b == (a ∨ b) ∧ ¬(a ∧ b) == (a ∨ b) ∧ (¬a ∨ ¬b)
所以我只解决了部分问题:a xor b
对应于(Either a b, Either ? ?)
.但是,缺少的两种类型是什么?
so I've solved only part of the problem: a xor b
corresponds to (Either a b, Either ? ?)
. But what are the two missing types?
xor
的写法实际上归结为not
的写法.
It seems that how to write xor
actually boils down to how to write not
.
那么¬a
是什么?我的理解是,如果存在类型为a
的元素(至少一个),则a
是逻辑上正确的.因此,要使not a
为true,a
应该为false,即它应该为Void
.因此,在我看来,有两种可能性:
So what is ¬a
? My understanding is that a
is logical true if there exist an element (at least one) of type a
. So for not a
to be true, a
should be false, i.e. it should be Void
. Therefore, it seems to me that there are two possibilities:
(Either a Void, Either Void b) -- here I renamed "not b" to "b"
(Either Void b, Either a Void) -- here I renamed "not a" to "a"
但是在最后一段中,我有种感觉,就是我弄错了那只狗.
But in this last paragraph I have the feeling I'm just getting the wrong end of the dog.
(跟进问题.
(Follow up question here.)
推荐答案
否定的标准技巧是使用-> Void
,因此:
The standard trick for negation is to use -> Void
, so:
type Not a = a -> Void
当a
本身是可证明的无人居住类型时,我们可以精确地构造此类型的全部居民.如果有a
的任何居民,我们将无法构造此类型的全部居民.听起来像是对我的否定!
We can construct a total inhabitant of this type exactly when a
is itself a provably uninhabited type; if there are any inhabitants of a
, we cannot construct a total inhabitant of this type. Sounds like a negation to me!
内联,这意味着您对xor的定义看起来像其中之一:
Inlined, this means your definition of xor looks like one of these:
type Xor a b = (Either a b, (a, b) -> Void) -- (a ∨ b) ∧ ¬(a ∧ b)
type Xor a b = (Either a b, Either (a -> Void) (b -> Void)) -- (a ∨ b) ∧ (¬a ∨ ¬b)
这篇关于类型理论中与xor b对应的类型是什么?的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持!