问题描述
我只是在脑子里跳动,试图使Cholesky分解起作用,以便模拟相关的价格变动.
I'm just beating my head against the wall trying to get a Cholesky decomposition to work in order to simulate correlated price movements.
我使用以下代码:
cormat <- as.matrix(read.csv("http://pastebin.com/raw/qGbkfiyA"))
cormat <- cormat[,2:ncol(cormat)]
rownames(cormat) <- colnames(cormat)
cormat <- apply(cormat,c(1,2),FUN = function(x) as.numeric(x))
chol(cormat)
#Error in chol.default(cormat) :
# the leading minor of order 8 is not positive definite
cholmat <- chol(cormat, pivot=TRUE)
#Warning message:
# In chol.default(cormat, pivot = TRUE) :
# the matrix is either rank-deficient or indefinite
rands <- array(rnorm(ncol(cholmat)), dim = c(10000,ncol(cholmat)))
V <- t(t(cholmat) %*% t(rands))
#Check for similarity
cor(V) - cormat ## Not all zeros!
#Check the standard deviations
apply(V,2,sd) ## Not all ones!
我不太确定如何正确使用pivot = TRUE
语句来生成相关的动作.结果看起来完全是伪造的.
I'm not really sure how to properly use the pivot = TRUE
statement to generate my correlated movements. The results look totally bogus.
即使我有一个简单的矩阵并且尝试枢轴"操作,我也会得到虚假结果...
Even if I have a simple matrix and I try out "pivot" then I get bogus results...
cormat <- matrix(c(1,.95,.90,.95,1,.93,.90,.93,1), ncol=3)
cholmat <- chol(cormat)
# No Error
cholmat2 <- chol(cormat, pivot=TRUE)
# No warning... pivot changes column order
rands <- array(rnorm(ncol(cholmat)), dim = c(10000,ncol(cholmat)))
V <- t(t(cholmat2) %*% t(rands))
#Check for similarity
cor(V) - cormat ## Not all zeros!
#Check the standard deviations
apply(V,2,sd) ## Not all ones!
推荐答案
您的代码有两个错误:
-
您没有使用数据透视索引将数据透视还原为Cholesky因子.请注意,半正定矩阵
A
的枢轴Cholesky因式分解正在做:
You did not use pivoting index to revert the pivoting done to the Cholesky factor. Note, pivoted Cholesky factorization for a semi-positive definite matrix
A
is doing:
P'AP = R'R
其中,P
是列枢轴矩阵,而R
是上三角矩阵.要从R
恢复A
,我们需要应用P
的倒数(即P'
):
where P
is a column pivoting matrix, and R
is an upper triangular matrix. To recover A
from R
, we need apply the inverse of P
(i.e., P'
):
A = PR'RP' = (RP')'(RP')
协方差矩阵为A
的多元法线由以下方式生成:
Multivariate normal with covariance matrix A
, is generated by:
XRP'
其中X
是具有零均值和同一性协方差的多元正态.
where X
is multivariate normal with zero mean and identity covariance.
您生成的X
X <- array(rnorm(ncol(R)), dim = c(10000,ncol(R)))
是错误的.首先,它不应该是ncol(R)
,而应该是nrow(R)
,即X
的等级,由r
表示.其次,沿着列循环使用rnorm(ncol(R))
,结果矩阵根本不是随机的.因此,cor(X)
永远不会接近单位矩阵.正确的代码是:
is wrong. First, it should not be ncol(R)
but nrow(R)
, i.e., the rank of X
, denoted by r
. Second, you are recycling rnorm(ncol(R))
along columns, and the resulting matrix is not random at all. Therefore, cor(X)
is never close to an identity matrix. The correct code is:
X <- matrix(rnorm(10000 * r), 10000, r)
作为上述理论的模型实现,请考虑您的玩具示例:
As a model implementation of the above theory, consider your toy example:
A <- matrix(c(1,.95,.90,.95,1,.93,.90,.93,1), ncol=3)
我们计算较高的三角因子(抑制可能的等级不足警告),并提取逆向枢轴指标和等级:
We compute the upper triangular factor (suppressing possible rank-deficient warnings) and extract inverse pivoting index and rank:
R <- suppressWarnings(chol(A, pivot = TRUE))
piv <- order(attr(R, "pivot")) ## reverse pivoting index
r <- attr(R, "rank") ## numerical rank
然后我们生成X
.为了获得更好的结果,我们将X
居中,以使列均值为0.
Then we generate X
. For better result we centre X
so that column means are 0.
X <- matrix(rnorm(10000 * r), 10000, r)
## for best effect, we centre `X`
X <- sweep(X, 2L, colMeans(X), "-")
然后我们生成目标多元正态:
Then we generate target multivariate normal:
## compute `V = RP'`
V <- R[1:r, piv]
## compute `Y = X %*% V`
Y <- X %*% V
我们可以验证Y
具有目标协方差A
:
We can verify that Y
has target covariance A
:
cor(Y)
# [,1] [,2] [,3]
#[1,] 1.0000000 0.9509181 0.9009645
#[2,] 0.9509181 1.0000000 0.9299037
#[3,] 0.9009645 0.9299037 1.0000000
A
# [,1] [,2] [,3]
#[1,] 1.00 0.95 0.90
#[2,] 0.95 1.00 0.93
#[3,] 0.90 0.93 1.00
这篇关于通过透视Cholesky分解生成具有秩不足协方差的多元正态r.v.的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持!