本文介绍了获取具有相应索引值的每日数据帧的每月最大值的处理方法,对大家解决问题具有一定的参考价值,需要的朋友们下面随着小编来一起学习吧!
问题描述
我已经从雅虎财经下载了每日数据
I have dowloaded daily data from yahoo finance
Open High Low Close Volume
Date
2016-01-04 10485.809570 10485.910156 10248.580078 10283.440430 116249000
2016-01-05 10373.269531 10384.259766 10173.519531 10310.099609 82348000
2016-01-06 10288.679688 10288.679688 10094.179688 10214.019531 87751700
2016-01-07 10144.169922 10145.469727 9810.469727 9979.849609 124188100
2016-01-08 10010.469727 10122.459961 9849.339844 9849.339844 95672200
...
2016-02-23 9503.120117 9535.120117 9405.219727 9416.769531 87240700
2016-02-24 9396.480469 9415.330078 9125.190430 9167.799805 99216000
2016-02-25 9277.019531 9391.309570 9199.089844 9331.480469 0
2016-02-26 9454.519531 9576.879883 9436.330078 9513.299805 95662100
2016-02-29 9424.929688 9498.570312 9332.419922 9495.400391 90978700
我想找出每个月的最高收盘价以及这个收盘价的日期.
I would like to find the maximum closing price each month and also the date of this closing price.
使用 groupby dfM = df['Close'].groupby(df.index.month).max()
它会返回每月最大值,但我会失去每日索引位置.
With a groupby dfM = df['Close'].groupby(df.index.month).max()
it returns me the monthly maximums but I am losing the daily index position.
grouped by month
1 10310.099609
2 9757.879883
有没有保存索引的好方法?
Is there a good way to to keep the index?
我会寻找这样的结果:
grouped by month
2016-01-05 10310.099609
2016-02-01 9757.879883
推荐答案
你可以使用 TimeGrouper
和 groupby
获得每月的最大值:
You can get the max value per month using TimeGrouper
together with groupby
:
from pandas.io.data import DataReader
aapl = DataReader('AAPL', data_source='yahoo', start='2015-6-1')
>>> aapl.groupby(pd.TimeGrouper('M')).Close.max()
Date
2015-06-30 130.539993
2015-07-31 132.070007
2015-08-31 119.720001
2015-09-30 116.410004
2015-10-31 120.529999
2015-11-30 122.570000
2015-12-31 119.029999
2016-01-31 105.349998
2016-02-29 98.120003
2016-03-31 100.529999
Freq: M, Name: Close, dtype: float64
使用idxmax
会得到对应日期的最高价格.
Using idxmax
will get the corresponding dates of the max price.
>>> aapl.groupby(pd.TimeGrouper('M')).Close.idxmax()
Date
2015-06-30 2015-06-01
2015-07-31 2015-07-20
2015-08-31 2015-08-10
2015-09-30 2015-09-16
2015-10-31 2015-10-29
2015-11-30 2015-11-03
2015-12-31 2015-12-04
2016-01-31 2016-01-04
2016-02-29 2016-02-17
2016-03-31 2016-03-01
Name: Close, dtype: datetime64[ns]
并排获取结果:
>>> aapl.groupby(pd.TimeGrouper('M')).Close.agg({'max date': 'idxmax', 'max price': np.max})
max price max date
Date
2015-06-30 130.539993 2015-06-01
2015-07-31 132.070007 2015-07-20
2015-08-31 119.720001 2015-08-10
2015-09-30 116.410004 2015-09-16
2015-10-31 120.529999 2015-10-29
2015-11-30 122.570000 2015-11-03
2015-12-31 119.029999 2015-12-04
2016-01-31 105.349998 2016-01-04
2016-02-29 98.120003 2016-02-17
2016-03-31 100.529999 2016-03-01
这篇关于获取具有相应索引值的每日数据帧的每月最大值的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持!