问题描述
我正在尝试通过METIS进行不平衡分区。我不需要每个簇中相等数量的顶点(这在METIS中默认完成)。我的图没有约束,它是无向的无权图。这是一个由METIS聚类的玩具图示例,其中没有任何 ufactor
参数。
I am trying to do a imbalanced partition by METIS. I do not need equal number of vertices in each cluster(which is done by default in METIS). My graph has no constraints, it's a undirected unweighted graph. Here is a example toy graph clustered by METIS without no ufactor
parameter.
然后,我尝试使用其他 ufactor
和值143, METIS
开始使
像以下内容一样完成预期的群集-
Then, i tried with different ufactor
and at value 143, METIS
starts todo the expected cluster like the following-
任何人都可以解释这一点。最终,我想找到一种方法,可以从任何不平衡且无向的图中猜出 ufactor
,这将使归一化切割最小化,而不必做任何平衡。
Can anybody interpret this. Eventually, I want to find a way to guess an ufactor
from any unbalanced and undirected graph that will minimize the normalized cut without doing any balance necessarily.
推荐答案
Imbalance = 1 +(ufactor / 1000)
。默认情况下 imbalance = 1
。最大簇中的顶点数-
Imbalance=1+(ufactor/1000)
. By default imbalance=1
. Number of vertex in largest cluster-
imbalance*(number of vertex/number of cluster)
对于第一张图片(默认聚类)-大簇中的顶点数量-
1 *(14 / 2)= 7
,因此第二个簇也是 14-7 = 7
在第二张图片中(ufactor 143)-
For first picture(default clustering)- number of vertex in larges cluster-1*(14/2)=7
, so the second cluster is also 14-7=7
In the second picture(ufactor 143)-
imbalance=1+143/1000=1.143
so, 1.143*(14/2)=8.001
这允许最大的群集具有8个顶点。
That allows the largest cluster to have 8 vertex.
这篇关于玩具图聚类上“ ufactor”的解释的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持!