本文介绍了Java - 在距离加权地图中查找两点之间的最短路径的处理方法,对大家解决问题具有一定的参考价值,需要的朋友们下面随着小编来一起学习吧!

问题描述

我需要一种算法来找到地图中两点之间的最短路径其中道路距离用数字表示.

I need an algorithm to find shortest path between two points in a mapwhere road distance is indicated by a number.

给出的内容:开始城市A目的地城市Z

what is given:Start City ADestination City Z

城市之间的距离列表:

A - B : 10
F-K:23
右-中:8
K-O:40
Z-P:18
J-K:25
D - B : 11
M - A : 8
P-R:15

A - B : 10
F - K : 23
R - M : 8
K - O : 40
Z - P : 18
J - K : 25
D - B : 11
M - A : 8
P - R : 15

我以为我可以使用 Dijkstra 的算法,但是它会找到到所有目的地的最短距离.不止一个.

I thought I could use Dijkstra's algorithm , however it finds shortest distance to all destinations. not just one.

感谢任何建议.

推荐答案

就像 SplinterReality 所说:没有理由不在这里使用 Dijkstra 算法.

Like SplinterReality said: There's no reason not to use Dijkstra's algorithm here.

下面的代码是我从 here 并修改它以解决问题中的示例.

The code below I nicked from here and modified it to solve the example in the question.

import java.util.PriorityQueue;
import java.util.List;
import java.util.ArrayList;
import java.util.Collections;

class Vertex implements Comparable<Vertex>
{
    public final String name;
    public Edge[] adjacencies;
    public double minDistance = Double.POSITIVE_INFINITY;
    public Vertex previous;
    public Vertex(String argName) { name = argName; }
    public String toString() { return name; }
    public int compareTo(Vertex other)
    {
        return Double.compare(minDistance, other.minDistance);
    }

}


class Edge
{
    public final Vertex target;
    public final double weight;
    public Edge(Vertex argTarget, double argWeight)
    { target = argTarget; weight = argWeight; }
}

public class Dijkstra
{
    public static void computePaths(Vertex source)
    {
        source.minDistance = 0.;
        PriorityQueue<Vertex> vertexQueue = new PriorityQueue<Vertex>();
        vertexQueue.add(source);

        while (!vertexQueue.isEmpty()) {
            Vertex u = vertexQueue.poll();

            // Visit each edge exiting u
            for (Edge e : u.adjacencies)
            {
                Vertex v = e.target;
                double weight = e.weight;
                double distanceThroughU = u.minDistance + weight;
                if (distanceThroughU < v.minDistance) {
                    vertexQueue.remove(v);

                    v.minDistance = distanceThroughU ;
                    v.previous = u;
                    vertexQueue.add(v);
                }
            }
        }
    }

    public static List<Vertex> getShortestPathTo(Vertex target)
    {
        List<Vertex> path = new ArrayList<Vertex>();
        for (Vertex vertex = target; vertex != null; vertex = vertex.previous)
            path.add(vertex);

        Collections.reverse(path);
        return path;
    }

    public static void main(String[] args)
    {
        // mark all the vertices
        Vertex A = new Vertex("A");
        Vertex B = new Vertex("B");
        Vertex D = new Vertex("D");
        Vertex F = new Vertex("F");
        Vertex K = new Vertex("K");
        Vertex J = new Vertex("J");
        Vertex M = new Vertex("M");
        Vertex O = new Vertex("O");
        Vertex P = new Vertex("P");
        Vertex R = new Vertex("R");
        Vertex Z = new Vertex("Z");

        // set the edges and weight
        A.adjacencies = new Edge[]{ new Edge(M, 8) };
        B.adjacencies = new Edge[]{ new Edge(D, 11) };
        D.adjacencies = new Edge[]{ new Edge(B, 11) };
        F.adjacencies = new Edge[]{ new Edge(K, 23) };
        K.adjacencies = new Edge[]{ new Edge(O, 40) };
        J.adjacencies = new Edge[]{ new Edge(K, 25) };
        M.adjacencies = new Edge[]{ new Edge(R, 8) };
        O.adjacencies = new Edge[]{ new Edge(K, 40) };
        P.adjacencies = new Edge[]{ new Edge(Z, 18) };
        R.adjacencies = new Edge[]{ new Edge(P, 15) };
        Z.adjacencies = new Edge[]{ new Edge(P, 18) };


        computePaths(A); // run Dijkstra
        System.out.println("Distance to " + Z + ": " + Z.minDistance);
        List<Vertex> path = getShortestPathTo(Z);
        System.out.println("Path: " + path);
    }
}

上面的代码产生:

Distance to Z: 49.0
Path: [A, M, R, P, Z]

这篇关于Java - 在距离加权地图中查找两点之间的最短路径的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持!

07-30 04:51