r在数据表上的按行迭代

r在数据表上的按行迭代

本文介绍了r在数据表上的按行迭代的处理方法,对大家解决问题具有一定的参考价值,需要的朋友们下面随着小编来一起学习吧!

问题描述

 库(quantmod)
库(PerformanceAnalytics)
getSymbols( YHOO,src = google)
stock_dat = data.table( PerformanceAnalytics ::
CalculateReturns(Cl(YHOO)[1:10],'discrete'))
stock_dat [,Price:= 0]
stock_dat [1,2] = Cl(YHOO )[1]
stock_dat [,D:=(1 + YHOO.Close)* shift(Price,1)]

上面的代码生成以下结果:

 
stock_dat
YHOO.Close价格D
1:不适用25.61不适用
2:0.048418586 0.00 26.85
3:0.033147114 0.00 0.00
4:0.006488825 0.00 0.00
5:-0.012177650 0.00 0.00
6: 0.040609137 0.00 0.00
7:0.017421603 0.00 0.00
8:0.008561644 0.00 0.00
9:-0.005432937 0.00 0.00
10:-0.008193923 0.00 0.00

假设YHOO.Close是模拟回报,我需要从中回购价格。我以第一价格为基准。上面的代码理想情况下需要使用第3行中D的价格。

  nrowsDF  
for(i in 2:nrowsDF){
stock_dat [i,2] =(1 + stock_dat [i,1,with = FALSE])* stock_dat [i-1,2,with = FALSE]
}

以上代码解决了该问题。但是我正在寻找一种更有效的方法,因为我必须对5000多个模拟收益序列重复此操作



以下是我实际上需要$ b $的答案b

 
stock_dat
YHOO.Close Price
1:NA 25.61
2:0.048418586 26.85
3:0.033147114 27.74
4: 0.006488825 27.92
5:-0.012177650 27.58
6:0.040609137 28.70
7:0.017421603 29.20
8:0.008561644 29.45
9:-0.005432937 29.29
10: -0.008193923 29.05
解决方案

您可以使用如下累积产品:

  DT  NA 25.61 NA 
0.048418586 0.00 26.85
0.033147114 0.00 0.00
0.006488825 0.00 0.00
-0.012177650 0.00 0.00
0.040609137 0.00 0.00
0.017421603 0.00 0.00
0.008561644 0 .0.00 0.00
-0.005432937 0.00 0.00
-0.008193923 0.00 0.00)

DT [,res:=价格[1] * c(1,cumprod(1 + YHOO。关闭[-1]))]]
#YHOO.Close价格D res
#1:NA 25.61 NA 25.61
#2:0.048418586 0.00 26.85 26.85
#3:0.033147114 0.00 0.00 27.74
#4:0.006488825 0.00 0.00 27.92
#5:-0.012177650 0.00 0.00 27.58
#6:0.040609137 0.00 0.00 28.70
#7:0.017421603 0.00 0.00 29.20
#8:0.008561644 0.00 0.00 29.45
#9:-0.005432937 0.00 0.00 29.29
#10:-0.008193923 0.00 0.00 29.05


library(quantmod)
library(PerformanceAnalytics)
getSymbols("YHOO",src="google")
stock_dat=data.table(PerformanceAnalytics::
CalculateReturns(Cl(YHOO)[1:10],'discrete'))
stock_dat[,Price:=0]
stock_dat[1,2]=Cl(YHOO)[1]
stock_dat[,D:=(1+YHOO.Close)*shift(Price,1)]

The above code generates the below result:

 stock_dat
      YHOO.Close Price     D
 1:           NA 25.61    NA
 2:  0.048418586  0.00 26.85
 3:  0.033147114  0.00  0.00
 4:  0.006488825  0.00  0.00
 5: -0.012177650  0.00  0.00
 6:  0.040609137  0.00  0.00
 7:  0.017421603  0.00  0.00
 8:  0.008561644  0.00  0.00
 9: -0.005432937  0.00  0.00
10: -0.008193923  0.00  0.00

The YHOO.Close is assumed to be a simulated returns and i need to back out the prices from that. And i am using the first price as the base. The above code needs to ideally use the price in D from row 3.

nrowsDF <- nrow(stock_dat)

for(i in 2:nrowsDF){
  stock_dat[i,2]=(1+stock_dat[i,1,with=FALSE])*stock_dat[i-1,2,with=FALSE]
}

The above code solves the problem. But am looking for a more efficent way to do this, as i have to repeat this for over 5000 simulated return series

The below is the answer i actually need

stock_dat
      YHOO.Close Price
 1:           NA 25.61
 2:  0.048418586 26.85
 3:  0.033147114 27.74
 4:  0.006488825 27.92
 5: -0.012177650 27.58
 6:  0.040609137 28.70
 7:  0.017421603 29.20
 8:  0.008561644 29.45
 9: -0.005432937 29.29
10: -0.008193923 29.05

解决方案

You can use the cumulative product like this:

DT <- fread("      YHOO.Close Price     D
                     NA 25.61    NA
            0.048418586  0.00 26.85
            0.033147114  0.00  0.00
            0.006488825  0.00  0.00
           -0.012177650  0.00  0.00
            0.040609137  0.00  0.00
            0.017421603  0.00  0.00
            0.008561644  0.00  0.00
           -0.005432937  0.00  0.00
           -0.008193923  0.00  0.00")

DT[, res := Price[1] * c(1, cumprod(1 + YHOO.Close[-1]))]
#      YHOO.Close Price     D   res
# 1:           NA 25.61    NA 25.61
# 2:  0.048418586  0.00 26.85 26.85
# 3:  0.033147114  0.00  0.00 27.74
# 4:  0.006488825  0.00  0.00 27.92
# 5: -0.012177650  0.00  0.00 27.58
# 6:  0.040609137  0.00  0.00 28.70
# 7:  0.017421603  0.00  0.00 29.20
# 8:  0.008561644  0.00  0.00 29.45
# 9: -0.005432937  0.00  0.00 29.29
#10: -0.008193923  0.00  0.00 29.05

这篇关于r在数据表上的按行迭代的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持!

07-30 03:09