问题描述
I am trying to get many lm
models work in a function and I need to automatically drop constant columns from my data.table. Thus, I want to keep only columns with two or more unique values, excluding NA
from the count.
I tried several methods found on SO, but I am still not able to drop columns that have two values: a constant and NAs.
My reproducible code:
library(data.table)
df <- data.table(x=c(1,2,3,NA,5), y=c(1,1,NA,NA,NA),z=c(NA,NA,NA,NA,NA),
d=c(2,2,2,2,2))
> df
x y z d
1: 1 1 NA 2
2: 2 1 NA 2
3: 3 NA NA 2
4: NA NA NA 2
5: 5 NA NA 2
My intention is to drop columns y, z, and d since they are constant, including y that only have one unique value when NA
s are omitted.
I tried this:
same <- sapply(df, function(.col){ all(is.na(.col)) || all(.col[1L] == .col)})
df1 <- df[ , !same, with = FALSE]
> df1
x y
1: 1 1
2: 2 1
3: 3 NA
4: NA NA
5: 5 NA
As seen, 'y' is still there ...Any help?
Because you have a data.table
, you may use uniqueN
and its na.rm
argument:
df[ , lapply(.SD, function(v) if(uniqueN(v, na.rm = TRUE) > 1) v)]
# x
# 1: 1
# 2: 2
# 3: 3
# 4: NA
# 5: 5
A base
alternative could be Filter(function(x) length(unique(x[!is.na(x)])) > 1, df)
这篇关于删除带或不带 NA 的常量列的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持!