本文介绍了如何将多个列连接成单个列(不事先知道其编号)?的处理方法,对大家解决问题具有一定的参考价值,需要的朋友们下面随着小编来一起学习吧!
问题描述
假设我具有以下数据框:
Let say I have the following dataframe:
agentName|original_dt|parsed_dt| user|text|
+----------+-----------+---------+-------+----+
|qwertyuiop| 0| 0|16102.0| 0|
我希望创建一个新的数据框,其中又包含一列,该列具有该行所有元素的串联:
I wish to create a new dataframe with one more column that has the concatenation of all the elements of the row:
agentName|original_dt|parsed_dt| user|text| newCol
+----------+-----------+---------+-------+----+
|qwertyuiop| 0| 0|16102.0| 0| [qwertyuiop, 0,0, 16102, 0]
注意:这只是一个例子.列数及其名称未知.它是动态的.
Note: This is a just an example. The number of columns and names of them is not known. It is dynamic.
推荐答案
我认为这非常适合您的情况这是一个例子
I think this works perfect for your case here is with an example
val spark =
SparkSession.builder().master("local").appName("test").getOrCreate()
import spark.implicits._
val data = spark.sparkContext.parallelize(
Seq(
("qwertyuiop", 0, 0, 16102.0, 0)
)
).toDF("agentName","original_dt","parsed_dt","user","text")
val result = data.withColumn("newCol", split(concat_ws(";", data.schema.fieldNames.map(c=> col(c)):_*), ";"))
result.show()
+----------+-----------+---------+-------+----+------------------------------+
|agentName |original_dt|parsed_dt|user |text|newCol |
+----------+-----------+---------+-------+----+------------------------------+
|qwertyuiop|0 |0 |16102.0|0 |[qwertyuiop, 0, 0, 16102.0, 0]|
+----------+-----------+---------+-------+----+------------------------------+
希望这对您有帮助!
这篇关于如何将多个列连接成单个列(不事先知道其编号)?的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持!