问题描述
我想计算一个语料库作者之间的余弦距离.让我们收集20个文档的语料库.
I want to calculate the cosine distance among authors of a corpus. Let's take a corpus of 20 documents.
require(tm)
data("crude")
length(crude)
# [1] 20
我想找出这20个文档之间的余弦距离(相似度).我用
I want to find out the cosine distance (similarity) among these 20 documents. I create a term-document matrix with
tdm <- TermDocumentMatrix(crude,
control = list(removePunctuation = TRUE,
stopwords = TRUE))
然后我必须将其转换为矩阵以将其传递给 proxy 包的dist()
then I have to convert it to a matrix to pass it to dist()
of the proxy package
tdm <- as.matrix(tdm)
require(proxy)
cosine_dist_mat <- as.matrix(dist(t(tdm), method = "cosine"))
最后,我删除了余弦距离矩阵的对角线(因为我对文档与其自身之间的距离不感兴趣),并计算了每个文档与语料库的其他19个文档之间的平均距离
Finally I remove the diagonal of my cosine distance matrix (since I am not interested in the distance between a document and itself) and compute the average distance between each document and the other 19 document of the corpus
diag(cosine_dist_mat) <- NA
cosine_dist <- apply(cosine_dist_mat, 2, mean, na.rm=TRUE)
cosine_dist
# 127 144 191 194
# 0.6728505 0.6788326 0.7808791 0.8003223
# 211 236 237 242
# 0.8218699 0.6702084 0.8752164 0.7553570
# 246 248 273 349
# 0.8205872 0.6495110 0.7064158 0.7494145
# 352 353 368 489
# 0.6972964 0.7134836 0.8352642 0.7214411
# 502 543 704 708
# 0.7294907 0.7170188 0.8522494 0.8726240
到目前为止(使用小型语料库)效果很好.问题在于该方法不能很好地扩展到较大的文档集.一次,由于两次调用as.matrix()
,将tdm
从 tm 传递到 proxy 并最终计算平均值,似乎效率低下.
So far so good (with small corpora). The problem is that this method doesn't scale well for larger corpora of documents. For once it seems inefficient because of the two calls to as.matrix()
, to pass the tdm
from tm to proxy and finally to calculate the average.
是否有可能构想出一种更智能的方法来获得相同的结果?
Is it possible to conceive a smarter way to obtain the same result?
推荐答案
由于tm
的术语文档矩阵只是slam
包中的稀疏简单三元组矩阵",因此您可以使用那里的函数来计算距余弦相似性定义的距离:
Since tm
's term document matrices are just sparse "simple triplet matrices" from the slam
package, you could use the functions there to calculate the distances directly from the definition of cosine similarity:
library(slam)
cosine_dist_mat <- 1 - crossprod_simple_triplet_matrix(tdm)/(sqrt(col_sums(tdm^2) %*% t(col_sums(tdm^2))))
这利用了稀疏矩阵乘法的优势.在我手中,一个tdm包含220个文档中的2963个术语,稀疏度为97%,只用了几秒钟.
This takes advantage of sparse matrix multiplication. In my hands, a tdm with 2963 terms in 220 documents and 97% sparsity took barely a couple of seconds.
我还没有对此进行介绍,所以我不知道它是否比proxy::dist()
快.
I haven't profiled this, so I have no idea if it's any faster than proxy::dist()
.
注意:为此,您应该不将tdm强制转换为常规矩阵,即不要执行tdm <- as.matrix(tdm)
.
NOTE: for this to work, you should not coerce the tdm into a regular matrix, i.e don't do tdm <- as.matrix(tdm)
.
这篇关于R:使用tm和proxy计算距术语文档矩阵的余弦距离的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持!