问题描述
我必须查询 HBASE,然后使用 spark 和 scala 处理数据.我的问题是,在我的解决方案中,我获取了 HBASE 表的所有数据,然后进行过滤,这不是一种有效的方法,因为它占用了太多内存.所以我想直接做过滤器,我该怎么做?
I have to query HBASE and then work with the data with spark and scala.My problem is that with my solution, i take ALL the data of my HBASE table and then i filter, it's not an efficient way because it takes too much memory. So i would like to do the filter directly, how can i do that ?
def HbaseSparkQuery(table: String, gatewayINPUT: String, sparkContext: SparkContext): DataFrame = {
val sqlContext = new SQLContext(sparkContext)
import sqlContext.implicits._
val conf = HBaseConfiguration.create()
val tableName = table
conf.set("hbase.zookeeper.quorum", "localhost")
conf.set("hbase.master", "localhost:60000")
conf.set(TableInputFormat.INPUT_TABLE, tableName)
val hBaseRDD = sparkContext.newAPIHadoopRDD(conf, classOf[TableInputFormat], classOf[ImmutableBytesWritable], classOf[Result])
val DATAFRAME = hBaseRDD.map(x => {
(Bytes.toString(x._2.getValue(Bytes.toBytes("header"), Bytes.toBytes("gatewayIMEA"))),
Bytes.toString(x._2.getValue(Bytes.toBytes("header"), Bytes.toBytes("eventTime"))),
Bytes.toString(x._2.getValue(Bytes.toBytes("node"), Bytes.toBytes("imei"))),
Bytes.toString(x._2.getValue(Bytes.toBytes("measure"), Bytes.toBytes("rssi"))))
}).toDF()
.withColumnRenamed("_1", "GatewayIMEA")
.withColumnRenamed("_2", "EventTime")
.withColumnRenamed("_3", "ap")
.withColumnRenamed("_4", "RSSI")
.filter($"GatewayIMEA" === gatewayINPUT)
DATAFRAME
}
正如您在我的代码中看到的那样,我在创建数据框之后,在加载 Hbase 数据之后进行过滤..
As you can see in my code, I do the filter after the creation of the dataframe, after the loading of Hbase data ..
提前感谢您的回答
推荐答案
这是我找到的解决方案
Here is the solution I found
import org.apache.hadoop.hbase.client._
import org.apache.hadoop.hbase.filter._
import org.apache.hadoop.hbase.io.ImmutableBytesWritable
import org.apache.hadoop.hbase.mapreduce.TableInputFormat
import org.apache.hadoop.hbase.util.Bytes
import org.apache.spark.sql.SQLContext
import org.apache.spark.{SparkConf, SparkContext}
import org.apache.hadoop.hbase.mapreduce.TableMapReduceUtil
object HbaseConnector {
def main(args: Array[String]): Unit = {
// System.setProperty("hadoop.home.dir", "/usr/local/hadoop")
val sparkConf = new SparkConf().setAppName("CoverageAlgPipeline").setMaster("local[*]")
val sparkContext = new SparkContext(sparkConf)
val sqlContext = new SQLContext(sparkContext)
import sqlContext.implicits._
val spark = org.apache.spark.sql.SparkSession.builder
.master("local")
.appName("Coverage Algorithm")
.getOrCreate
val GatewayIMEA = "123"
val TABLE_NAME = "TABLE"
val conf = HBaseConfiguration.create()
conf.set("hbase.zookeeper.quorum", "localhost")
conf.set("hbase.master", "localhost:60000")
conf.set(TableInputFormat.INPUT_TABLE, TABLE_NAME)
val connection = ConnectionFactory.createConnection(conf)
val table = connection.getTable(TableName.valueOf(TABLE_NAME))
val scan = new Scan
val GatewayIDFilter = new SingleColumnValueFilter(Bytes.toBytes("header"), Bytes.toBytes("gatewayIMEA"), CompareFilter.CompareOp.EQUAL, Bytes.toBytes(String.valueOf(GatewayIMEA)))
scan.setFilter(GatewayIDFilter)
conf.set(TableInputFormat.SCAN, TableMapReduceUtil.convertScanToString(scan))
val hBaseRDD = sparkContext.newAPIHadoopRDD(conf, classOf[TableInputFormat], classOf[ImmutableBytesWritable], classOf[Result])
val DATAFRAME = hBaseRDD.map(x => {
(Bytes.toString(x._2.getValue(Bytes.toBytes("header"), Bytes.toBytes("gatewayIMEA"))),
Bytes.toString(x._2.getValue(Bytes.toBytes("header"), Bytes.toBytes("eventTime"))),
Bytes.toString(x._2.getValue(Bytes.toBytes("node"), Bytes.toBytes("imei"))),
Bytes.toString(x._2.getValue(Bytes.toBytes("measure"), Bytes.toBytes("Measure"))))
}).toDF()
.withColumnRenamed("_1", "GatewayIMEA")
.withColumnRenamed("_2", "EventTime")
.withColumnRenamed("_3", "ap")
.withColumnRenamed("_4", "measure")
DATAFRAME.show()
}
}
所做的是设置您的输入表,设置您的过滤器,使用过滤器进行扫描并将扫描到RDD,然后将RDD转换为数据帧(可选)
What is done is to set your input table, set your filter, do the scan with the filter and get the scan to a RDD, and then transform the RDD to a dataframe (optional)
做多个过滤器:
val timestampFilter = new SingleColumnValueFilter(Bytes.toBytes("header"), Bytes.toBytes("eventTime"), CompareFilter.CompareOp.GREATER, Bytes.toBytes(String.valueOf(dateOfDayTimestamp)))
val GatewayIDFilter = new SingleColumnValueFilter(Bytes.toBytes("header"), Bytes.toBytes("gatewayIMEA"), CompareFilter.CompareOp.EQUAL, Bytes.toBytes(String.valueOf(GatewayIMEA)))
val filters = new FilterList(GatewayIDFilter, timestampFilter)
scan.setFilter(filters)
这篇关于带过滤器的 HBASE SPARK 查询,无需加载所有 hbase的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持!