问题描述
你好,感谢你的时间和考虑。我正在开发Google云平台/ Datalab中的Jupyter Notebook。
我创建了一个熊猫数据框,并且希望将此数据框写入Google Cloud Storage(GCS)和/或BigQuery。我在GCS中有一个存储桶,并通过以下代码创建了以下对象:
import gcp
import gcp.storage as storage
project = gcp.Context.default()。project_id
bucket_name ='steve-temp'
bucket_path = bucket_name
bucket = storage.Bucket(bucket_path)
bucket.exists()
我尝试过基于Google Datalab文档的各种方法,但继续失败。
Thanks $ / $>
请尝试以下工作示例:
<$来自datalab.context的p $ p> 导入上下文
导入google.datalab.storage作为存储
导入google.datalab.bigquery作为bq
导入pandas作为pd
#Dataframe写入
simple_dataframe = pd.DataFrame(data = [{1,2,3},{4,5,6}],columns = ['a','b' ,'c'])
sample_bucket_name = Context.default()。project_id +'-datalab-example'
sample_bucket_path ='gs://'+ sample_bucket_name
sample_bucket_object = sample_bucket_path +'/Hello.txt'
bigquery_dataset_name ='TestDataSet'
bigquery_table_name ='TestTable'
定义存储桶
sample_bucket = storage.Bucket(sample_bucket_name)
#如果不存在则创建存储桶
如果不存在sample_bucket.exists():
sample_bucket.create()
#定义BigQuery数据集和表
dataset = bq.Dataset(bigquery _dataset_name)
table = bq.Table(bigquery_dataset_name +'。'+ bigquery_table_name)
#如果不是dataset.exists():
dataset,则创建BigQuery数据集
。 create()
#创建或覆盖现有表(如果存在的话)
table_schema = bq.Schema.from_data(simple_dataframe)
table.create(schema = table_schema,overwrite = True )
#将DataFrame写入GCS(Google Cloud Storage)
%存储写入 - 变量simple_dataframe --object $ sample_bucket_object
#将DataFrame写入BigQuery table
table.insert(simple_dataframe)
我使用文件来自链接。
Hello and thanks for your time and consideration.I am developing a Jupyter Notebook in the Google Cloud Platform / Datalab.I have created a Pandas DataFrame and would like to write this DataFrame to both Google Cloud Storage(GCS) and/or BigQuery. I have a bucket in GCS and have, via the following code, created the following objects:
import gcp
import gcp.storage as storage
project = gcp.Context.default().project_id
bucket_name = 'steve-temp'
bucket_path = bucket_name
bucket = storage.Bucket(bucket_path)
bucket.exists()
I have tried various approaches based on Google Datalab documentation but continue to fail.Thanks
Try the following working example:
from datalab.context import Context
import google.datalab.storage as storage
import google.datalab.bigquery as bq
import pandas as pd
# Dataframe to write
simple_dataframe = pd.DataFrame(data=[{1,2,3},{4,5,6}],columns=['a','b','c'])
sample_bucket_name = Context.default().project_id + '-datalab-example'
sample_bucket_path = 'gs://' + sample_bucket_name
sample_bucket_object = sample_bucket_path + '/Hello.txt'
bigquery_dataset_name = 'TestDataSet'
bigquery_table_name = 'TestTable'
# Define storage bucket
sample_bucket = storage.Bucket(sample_bucket_name)
# Create storage bucket if it does not exist
if not sample_bucket.exists():
sample_bucket.create()
# Define BigQuery dataset and table
dataset = bq.Dataset(bigquery_dataset_name)
table = bq.Table(bigquery_dataset_name + '.' + bigquery_table_name)
# Create BigQuery dataset
if not dataset.exists():
dataset.create()
# Create or overwrite the existing table if it exists
table_schema = bq.Schema.from_data(simple_dataframe)
table.create(schema = table_schema, overwrite = True)
# Write the DataFrame to GCS (Google Cloud Storage)
%storage write --variable simple_dataframe --object $sample_bucket_object
# Write the DataFrame to a BigQuery table
table.insert(simple_dataframe)
I used this example, and the _table.py file from the datalab github site as a reference. You can find other datalab
source code files at this link.
这篇关于将 pandas 数据框写入Google Cloud Storage或BigQuery的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持!